已知雙曲線
x2
a2
-
y2
b2
=1(a>b>0)的離心率是
6
2
,則橢圓
x2
a2
+
y2
b2
=1的離心率是
 
分析:先由題設(shè)條件求出雙曲線的a,c的關(guān)系,從而得到a和 b的關(guān)系,再利用橢圓
x2
a2
+
y2
b2
=1的a和b關(guān)系求出橢圓的離心率.
解答:解:由題設(shè)條件可知雙曲線的離心率為
6
2
,
∴不妨設(shè)a=2.c=
6
,∴b=
2

∴橢圓
x2
a2
+
y2
b2
=1的a=2.b=
2

∴c=
2

則橢圓
x2
a2
+
y2
b2
=1的離心率為e=
2
2

故答案為:
2
2
點評:本題考查橢圓、雙曲線的標(biāo)準(zhǔn)方程及簡單性質(zhì).本題是雙曲線的橢圓的綜合題,難度不大,只要熟練掌握圓錐曲線的性質(zhì)就行.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點F1,交雙曲線的左支于A、B兩點,且|AB|=4,F(xiàn)2為雙曲線的右焦點,△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點與拋物線y2=4x的焦點重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點,離心率e=2,點M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點,且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點與拋物線y2=4
3
x
的焦點重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊答案