精英家教網 > 高中數學 > 題目詳情

函數f(x)=,則f(f(-2))=________若f(x)=-x2+2ax與g(x)=在區(qū)間[1,2]上是減函數,則a的取值范圍是________

練習冊系列答案
相關習題

科目:高中數學 來源:2004全國各省市高考模擬試題匯編(天利38套)·數學 題型:022

對任意的函數f(x),g(x),在公共定義域內,規(guī)定f(x)*g(x)=min{f(x),g(x)},若f(x)=3-x,g(x)=,則f(x)*g(x)的最大值為________.

查看答案和解析>>

科目:高中數學 來源:2012年人教A版高中數學必修四1.4三角函數的圖像與性質練習卷(三)(解析版) 題型:填空題

.(2010·深圳市調研)已知函數f(x)=,則f[f(2010)]=________.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省高三第二學期第一次統考理科數學 題型:填空題

若函數f (x),則f (x)的定義域是       

 

查看答案和解析>>

科目:高中數學 來源:2012屆浙江省高三調研測試理科數學試卷 題型:填空題

若函數f (x)=,則f (x)的定義域是       

 

查看答案和解析>>

科目:高中數學 來源:2013屆黑龍江虎林高中高二下學期期中理科數學試卷(解析版) 題型:解答題

已知函數f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結合構造函數和導數的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習冊答案