如果 
2sinα+cosα
3sinα-2cosα
=1
,那么tanα的值為_(kāi)_____.
原式=
2tanα+1
3tanα-2
=1,解得tanα=3.
故答案為:3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(三選一,考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系中圓C的參數(shù)方程為
x=1+2cosθ
y=
3
+2sinθ
(θ為參數(shù)),則圓C的普通方程為
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式選講選做題)設(shè)函數(shù)f(x)=|2x+1|-|x-4|,則不等式f(x)>2的解集為
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(幾何證明選講選做題) 如圖所示,等腰三角形ABC的底邊AC長(zhǎng)為6,其外接圓的半徑長(zhǎng)為5,則三角形ABC的面積是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镈的函數(shù)f(x),如果對(duì)任意x∈D,存在正數(shù)k,都有f(x)≤k|x|成立,那么稱(chēng)函數(shù)f(x)是D上的“倍約束函數(shù)”,已知下列函數(shù):
①f(x)=2x;
f(x)=2sin(x+
π
4
)

f(x)=
x-1
;
④f(x)=
x
x2-x+1

其中是“倍約束函數(shù)”的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•西安模擬)(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(坐標(biāo)系與參數(shù)方程)直線(xiàn)3x-4y-1=0被曲線(xiàn)
x=2cosθ
y=1+2sinθ
(θ為參數(shù))所截得的弦長(zhǎng)為
2
3
2
3

B.(不等式選講)若關(guān)于x不等式|x-1|+|x-m|<2m的解集為∅,則實(shí)數(shù)m的取值范圍為
m≤
1
3
m≤
1
3

C.(幾何證明選講)若Rt△ABC的內(nèi)切圓與斜邊AB相切于D,且AD=1,BD=2,則S△ABC=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:(請(qǐng)考生在以下三個(gè)小題中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點(diǎn)A是曲線(xiàn)ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線(xiàn)ρsin(θ+
π
3
)=4
的距離的最小值是
5
2
5
2

B.(選修4-5不等式選講)不等式|2x-1|+|2x-3|≥4的解集是
(-∞,0]∪[2,+∞)
(-∞,0]∪[2,+∞)

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線(xiàn),且OC=3,AB=4,延長(zhǎng)AO到D點(diǎn),則△ABD的面積是
48
5
48
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(
x
4
+2),如果存在實(shí)數(shù)x1,x2,使得對(duì)任意的實(shí)數(shù)x,都有f(x1)≤f(x)≤f(x2),則|x1-x2|的最小值是( 。
A、8πB、4πC、2πD、π

查看答案和解析>>

同步練習(xí)冊(cè)答案