如圖,在四棱錐P-ABCD中,PA=PB.底面ABCD是菱形,且∠ABC=60°,點M是AB的中點,點E在棱QD上,滿足DE=2PE.求證:
(1)平面PAB⊥平面PMC;
(2)直線PB∥平面EMC.

【答案】分析:(1)根據(jù)已知中,PA=PB.底面ABCD是菱形點M是AB的中點,根據(jù)等邊三角形的‘三線合一’的性質(zhì),我們易得到AB⊥平面PMC,再由面面垂直的判定定理,即可證明結論;
(2)連BD交MC于F,連EF,由CD=2BM,CD∥BM,我們可以得到△CDF∽△MBF,根據(jù)三角形相似的性質(zhì),可以得到DF=2BF.再根據(jù)DE=2PE,結合平行線分線段成比例定理,易判斷EF∥PB,結合線面平行的判定定理,即可得到結論.
解答:解:(1)∵PA=PB,M是AB的中點.
∴PM⊥AB.(2分)
∵底面ABCD是菱形,∴AB=AC.
∵∠ABC=60°.
∴△ABC是等邊三角形.
則CM⊥AB.(4分)
∵PM∩CM=M,
∴AB⊥平面PMC.(6分)
∵AB?平面PAB,
∴平面PAB⊥平面PMC.(8分)
(2)連BD交MC于F,連EF.

由CD=2BM,CD∥BM,易得△CDF∽△MBF.
∴DF=2BF.(10分)
∵DE=2PE,∴EF∥PB.(12分)
∵EF?平面EMC,PB?平面EMC,∴PB∥平面EMC.(14分)
點評:本題考查的知識點是空間中直線與平面之間的位置關系,熟練掌握直線與平面垂直及直線與平面平行的判定定理及證明步驟是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習冊答案