已知函數(shù)f(x)=ex-ex,
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)對于函數(shù)h(x)=x2與g(x)=elnx,是否存在公共切線y=kx+b(常數(shù)k,b)使得h(x)≥kx+b和g(x)≤kx+b在函數(shù)h(x),g(x)各自定義域上恒成立?若存在,求出該直線的方程;若不存在,請說明理由。

解:(Ⅰ)因為
得x=1,
當x>1時,;
當x<1時,,
所以,函數(shù)f(x)在上遞減,在上遞增,
所以,函數(shù)f(x)的最小值為f(1)=0;
(Ⅱ)設,
,
所以當時,;當時,,
因此當時,F(xiàn)(x)取得最小值0;
則h(x)與g(x)的圖象在處有公共點
設公切線方程為,得,
在x∈R恒成立,
在x∈R恒成立,
所以恒成立,因此
下面證明成立,
,
所以當時,;當時,;
因此時,G(x)取得最大值0,則成立,
所以,
故所求公共切線為。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
e-x-2,(x≤0)
2ax-1,(x>0)
(a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調函數(shù);
③若f(x)>0在[
1
2
,+∞)
上恒成立,則a的取值范圍是a>1;
④對任意x1<0,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e-z+log3
1
x
,若實數(shù)x0是方程f(x)=0的解,且x1>x0,則f(x1)的值(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•海淀區(qū)一模)已知函數(shù)f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)是否存在實數(shù)k,使得函數(shù)f(x)的極大值等于3e-2?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河南模擬)已知函數(shù)f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)是否存在實數(shù)k,使得函數(shù)f(x)的極大值等于3e-2?若存在,求出k的值;若不存在,請說明理由.
請考生在第(22)、(23)、(24)三題中任選一題作答,如果多做,則按所做的第一題記分.作答時用2B鉛筆在答題卡上把所選題目對應的題號涂黑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•孝感模擬)已知函數(shù)
f(x)=
e-x-1,(x≤0)
|lnx|,(x>0)
,集合M={x|f[f(x)]=1},則M中元素的個數(shù)為(  )

查看答案和解析>>

同步練習冊答案