已知函數(shù)(a∈R).
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),求單調(diào)區(qū)間;
(3)若對(duì)任意及,恒有
成立,求實(shí)數(shù)m的取值范圍.
(1)依題意知的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052602312537096445/SYS201205260233061365812756_DA.files/image002.png"> …………………………(1分)
當(dāng)時(shí), 令,解得
當(dāng)時(shí),;當(dāng)時(shí),
又∵ ∴的極小值為,無極大值 ……………(4分)
(2) ……………….(5分)
當(dāng)時(shí),,令,得,令得
當(dāng)時(shí),得,令得或;
令得;當(dāng)時(shí), f(x)=-
綜上所述,當(dāng)時(shí),的遞減區(qū)間為和,遞增區(qū)間為;
當(dāng)時(shí),在單調(diào)遞減;當(dāng)時(shí),的遞減區(qū)間為和,遞增區(qū)間為………………………………………………(8分)
(3)由(Ⅱ)可知,當(dāng)時(shí),在區(qū)間上單調(diào)遞減.
當(dāng)時(shí),取最大值;當(dāng)時(shí),取最小值;
……….(10分)
∵恒成立,∴
整理得,∵,∴恒成立,∵,
∴,∴m≤
【解析】(1)求導(dǎo),讓導(dǎo)數(shù)等于零,要注意根兩邊的函數(shù)值異號(hào)才是極值點(diǎn)。
(2)根據(jù)導(dǎo)數(shù)大于零和導(dǎo)數(shù)小于零,確定其單調(diào)增區(qū)間和減區(qū)間.
(3) 先轉(zhuǎn)化為,然后求f(x)的最大值及最小值,即可求出,然后再,然后根據(jù)一次函數(shù)的性質(zhì)解不等式即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)(a∈R).
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)當(dāng)時(shí),求單調(diào)區(qū)間;
(Ⅲ)若對(duì)任意及,恒有
成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)(a∈R).
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)當(dāng)時(shí),求單調(diào)區(qū)間;
(Ⅲ)若對(duì)任意及,恒有
成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省高二下學(xué)期第一次月考理科數(shù)學(xué) 題型:解答題
(本小題10分) 已知函數(shù) (a∈R)
(Ⅰ)若函數(shù)f(x)的圖象在x=2處的切線方程為,求a,b的值;
(Ⅱ)若函數(shù)f(x)在(1,+∞)為增函數(shù),求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕頭市金山中學(xué)高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com