已知曲線C1,C2的極坐標(biāo)方程分別為ρcosθ=3,,則曲線C1與C2交點(diǎn)的極坐標(biāo)為   
【答案】分析:直接將曲線C1,C2的極坐標(biāo)方程聯(lián)立方程組,解關(guān)于ρ,θ的方程組即得交點(diǎn)的極坐標(biāo).
解答:解:我們通過聯(lián)立解方程組

解得
即兩曲線的交點(diǎn)為
故填:
點(diǎn)評(píng):本題考查極坐標(biāo)方程,能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1,C2的極坐標(biāo)方程分別為ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<
π2
)
,則曲線C1與C2交點(diǎn)的極坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1、C2的極坐標(biāo)方程分別為ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<
π2
),求曲線C1、C2交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題:已知曲線C1,C2的極坐標(biāo)方程分別為ρ=4cos(θ+
π
6
)
ρcos(θ+
π
6
)=4

(1)將C1,C2的方程化為直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在曲線C1上,點(diǎn)Q在C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東模擬)(坐標(biāo)系與參數(shù)方程選做題)已知曲線C1、C2的極坐標(biāo)方程分別為ρ=-2cos(θ+
π
2
)
,
2
ρcos(θ-
π
4
)+1=0
,則曲線C1上的點(diǎn)與曲線C2上的點(diǎn)的最遠(yuǎn)距離為
2
+1
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•臨川區(qū)模擬)請(qǐng)考生在下列兩題中任選一題作答.若兩題都做,則按做的第一題評(píng)閱計(jì)分.
(1)已知曲線C1、C2的極坐標(biāo)方程分別為ρ=-2cos(θ+
π
2
)
,
2
ρcos(θ-
π
4
)+1=0
,則曲線C1上的點(diǎn)與曲線C2上的點(diǎn)的最遠(yuǎn)距離為
2
+1
2
+1

(2)設(shè)a=
x2-xy+y2
,b=p
xy
,c=x+y,若對(duì)任意的正實(shí)數(shù)x,y,都存在以a,b,c為三邊長(zhǎng)的三角形,則實(shí)數(shù)p的取值范圍是
(1,3)
(1,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案