已知向量
OP
=(2cos(
π
2
+x),-1),
OQ
=(-sin(
π
2
-x
),cos2x),定義函數(shù)f(x)=
OP
OQ

(1)求函數(shù)f(x)的表達(dá)式,并指出其最大值和最小值;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且f(A)=1,bc=8,求△ABC的面積S.
考點(diǎn):正弦定理的應(yīng)用,平面向量數(shù)量積的運(yùn)算,三角函數(shù)中的恒等變換應(yīng)用
專題:解三角形
分析:(1)首先對(duì)向量
OP
,
OQ
進(jìn)行化簡(jiǎn),利用三角函數(shù)的基本關(guān)系確定函數(shù)f(x)的解析式,從而求出f(x)的最大,最小值.
(2)根據(jù)已知條件以及(1)中的結(jié)論確定A的值,再利用三角形的面積公式求出面積S.
解答: 解:(1)∵
OP
=(2cos(
π
2
+x),-1)=(-2sinx,-1)

OQ
=(-sin(
π
2
-x),cos2x)=(-cosx,cos2x)

∴f(x)=
OP
OQ

=(-2sinx,-1)•(-cosx,cos2x)
=(-2sin x,-1)•(-cos x,cos 2x)
=(-sinx)•(-cosx)-cos2x
=sin 2x-cos2x
=
2
sin(2x-
π
4
),
∴f(x)的最大值和最小值分別是
2
和-
2

(2)∵f(A)=1,
2
sin(2x-
π
4
)=1
,
∴sin(2A-
π
4
)=
2
2

又∵0<A<π
∴2A-
π
4
=
π
4
或2A-
π
4
=
4

∴A=
π
4
或A=
π
2

又∵△ABC為銳角三角形,
∴A=
π
4

∵bc=8,
∴△ABC的面積S═
1
2
×8×
2
2
=2
2
點(diǎn)評(píng):本題考查三角函數(shù)基本關(guān)系的應(yīng)用,正弦定理等知識(shí).屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

y=sinx+
3
cosx(0≤x≤
π
2
),則y的最小值為( 。
A、-2
B、-1
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正整數(shù)的無窮數(shù)列{an}(n∈N*) 滿足a4=4,an2-an-1an+1=1(n≥2)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲船在A處發(fā)現(xiàn)乙船在北偏東60°的B處,乙船正以a n mile/h的速度向北行駛.已知甲船的速度是
3
a n mile/h,問甲船應(yīng)沿著什么方向前進(jìn),才能最快與乙船相遇?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

ABCD是平行四邊形,已知點(diǎn)A(-1,3)和C(-3,2),點(diǎn)D在直線x-3y=1上移動(dòng),求點(diǎn)B的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A=60°,b=1,S△ABC=
3
.求
(1)
a+b+c
sinA+sinB+sinC
的值.
(2)△ABC的內(nèi)切圓的半徑長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過兩圓C1:x2+y2=4,C2:(x-1)2+(y-2)2=1交點(diǎn),且被直線x+y-6=0平分的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分圖象如圖示,將y=f(x)的圖象向右平移
π
4
個(gè)單位后得到函數(shù)y=g(x)的 圖象.
(I )求函數(shù)y=g(x)的解析式;
(II)已知△ABC中三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足g(
A
2
+
π
12
)
+g(
B
2
+
π
12
)
=2
6
sinAsinaB,且C=
π
3
,c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=x2-4x+3在y<0時(shí)x的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案