如右圖所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M為AA1的中點(diǎn),P是BC上一點(diǎn),且由P沿棱柱側(cè)面經(jīng)過(guò)棱CC1到M的最短路線長(zhǎng)為,設(shè)這條最短路線與CC1的交點(diǎn)為N.求:
(1)該三棱柱的側(cè)面展開(kāi)圖的對(duì)角線長(zhǎng);
(2)PC和NC的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐—
的底面
是正方形,
⊥底面
,
是
上的任意一點(diǎn)。
(1)求證:平面
(2)設(shè),
,求點(diǎn)
到平面的
距離
(3)求的值為多少時(shí),二面角
—
—
的大小為120°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知高為3的棱柱ABC-A1B1C1的底面是邊長(zhǎng)為1的正三角形,求三棱錐B1-ABC的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)幾何體的三視圖如圖所示(單位長(zhǎng)度為:cm):
主視圖 側(cè)視圖 俯視圖
(1)求該幾何體的體積; (2)求該幾何題的表面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
如圖所示的一個(gè)三視圖中,右面是一個(gè)長(zhǎng)方體截去一角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫(huà)出(單位:cm)
(1)在正視圖下面,按照畫(huà)三視圖的要求畫(huà)出該多面體的俯視圖;
(2)按照給出的尺寸,求該多面體的體積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分10分)如圖所示,一個(gè)簡(jiǎn)單的空間幾何體的正視圖和側(cè)視圖是邊長(zhǎng)為2的正三角形,俯視圖輪廓為正方形,試描述該幾何體的特征,并求該幾何體的體積和表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為矩形,俯視圖為直角梯形(尺寸如圖所示)
(1)求證:AE//平面DCF;
(2)當(dāng)AB的長(zhǎng)為,
時(shí),求二面角A—EF—C的大�。�
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
一個(gè)幾何體是由圓柱和三棱錐
組合而成,點(diǎn)
、
、
在圓
的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖3所示,其中
,
,
,
.
(1)求證:;
(2)求二面角的平面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱中,
、
分別是
、
的中點(diǎn),點(diǎn)
在
上,
。
求證:(1)EF∥平面ABC;
(2)平面平面
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com