某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為(萬元),當年產(chǎn)量不足80千件時,(萬元).當年產(chǎn)量不小于80千件時,(萬元).每件商品售價為500元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
(1);(2)當時,即時取得最大值1000萬元.
解析試題分析:
對于有關利潤的題目,要注意總銷售額、成本,利潤=總銷售額-總成本,在題目中,如果含有的范圍有幾段,則要分論,函數(shù)寫成分段函數(shù)形式;則由題知每件商品售價為0.05萬元,則千件商品銷售額為萬元,在時,年利潤;在,年利潤,整理好結果用分段函數(shù)表示;(2)求利潤最大,即是求函數(shù)的最大值,由于是分段函數(shù),則分別求出每段函數(shù)的最大值,最終比較兩段最大中的較大者,即是函數(shù)最大;由(1)可求則在時用二次函數(shù)的方法求最大,注意的范圍,在中,利用均值不等式求出,注意等號成立的條件.
試題解析:(1)由題知每件商品售價為0.05萬元,則千件商品銷售額為萬元,
當時,年利潤;
當,年利潤
則
(2)當時,
此時,當時,取得最大值萬元.
當時,
當時,即時取得最大值1000萬元.
所以,當產(chǎn)量為100千件時,該廠在這一商品中所獲利潤最大,最大利潤為1000萬元.
考點:1.函數(shù)的實際應用,2.分段函數(shù)的解析式的求法,3.分段函數(shù)最大值的求解.
科目:高中數(shù)學 來源: 題型:解答題
某商品在近天內(nèi)每件的銷售價格(元)與時間(天)的函數(shù)關系是該商品的日銷售量(件)與時間(天)的函數(shù)關系是,設商品的日銷售額為(銷售量與價格之積)
(1)求商品的日銷售額的解析式;
(2)求商品的日銷售額的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是偶函數(shù).
(1)求的值;
(2)證明:對任意實數(shù),函數(shù)的圖像與直線最多只有一個交點;
(3)設若函數(shù)的圖像有且只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
相關部門對跳水運動員進行達標定級考核,動作自選,并規(guī)定完成動作成績在八分及以上的定為達標,成績在九分及以上的定為一級運動員. 已知參加此次考核的共有56名運動員.
(1)考核結束后,從參加考核的運動員中隨機抽取了8人,發(fā)現(xiàn)這8人中有2人沒有達標,有3人為一級運動員,據(jù)此請估計此次考核的達標率及被定為一級運動員的人數(shù);
(2)經(jīng)過考核,決定從其中的A、B、C、D、E五名一級運動員中任選2名參加跳水比賽(這五位運動員每位被選中的可能性相同). 寫出所有可能情況,并求運動員E被選中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
工廠生產(chǎn)某種產(chǎn)品,次品率與日產(chǎn)量(萬件)間的關系(為常數(shù),且),已知每生產(chǎn)一件合格產(chǎn)品盈利元,每出現(xiàn)一件次品虧損元.
(1)將日盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);
(2)為使日盈利額最大,日產(chǎn)量應為多少萬件?(注: )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com