19.設f'(x)是函數(shù)f(x)定義在(0,+∞)上的導函數(shù),滿足$xf'(x)+2f(x)=\frac{1}{x^2}$,則下列不等式一定成立的是( 。
A.$\frac{f(e)}{e^2}>\frac{{f({e^2})}}{e}$B.$\frac{f(2)}{9}<\frac{f(3)}{4}$C.$\frac{f(2)}{e^2}>\frac{f(e)}{4}$D.$\frac{f(e)}{e^2}<\frac{f(3)}{9}$

分析 構(gòu)造g(x)=x2f(x),利用其單調(diào)性即可推出結(jié)果.

解答 解:f'(x)是函數(shù)f(x)定義在(0,+∞)上的導函數(shù),滿足$xf'(x)+2f(x)=\frac{1}{x^2}$,
可得${x}^{2}f′(x)+2xf(x)=\frac{1}{x}$,
令g(x)=x2f(x),則g′(x)=x2f′(x)+2xf(x)=$\frac{1}{x}$>0,
∴函數(shù)g(x)在R上單調(diào)遞增.
∴g(2)=4f(2)<g(e)=e2f(e)<g(3)=9f(3),
∴$\frac{f(2)}{9}<\frac{f(3)}{4}$.
故選:B.

點評 本題考查函數(shù)與導數(shù)的應用,正確構(gòu)造g(x)=x2f(x)和熟練掌握利用導數(shù)研究和的單調(diào)性是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=sinx+tanx-2x.
(1)證明:函數(shù)f(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞增;
(2)若x∈(0,$\frac{π}{2}$),f(x)≥mx2,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級),相對應空氣質(zhì)量的七個類別,指數(shù)越大,說明污染的情況越嚴重,對人體危害越大.
指數(shù)級別類別戶外活動建議
0~50優(yōu)可正;顒
51~100
101~150輕微污染易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應減少體積消耗和戶外活動.
151~200輕度污染
201~250中度污染心臟病和肺病患者癥狀顯著加劇,運動耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應減少體力活動.
251~300中度重污染
301~500重污染健康人運動耐受力降低,由明顯強烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應當留在室內(nèi),避免體力消耗,一般人群應盡量減少戶外活動.
現(xiàn)統(tǒng)計邵陽市市區(qū)2016年10月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.

(1)求這60天中屬輕度污染的天數(shù);
(2)求這60天空氣質(zhì)量指數(shù)的平均值;
(3)將頻率分布直方圖中的五組從左到右依次命名為第一組,第二組,…,第五組.從第一組和第五組中的所有天數(shù)中抽出兩天,記它們的空氣質(zhì)量指數(shù)分別為x,y,求事件|x-y|≤150的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,圖中四邊形都是邊長為2的正方形,兩條虛線相互垂直,則該幾何體的表面積是(  )
A.$24+({\sqrt{2}+1})π$B.$24+({\sqrt{2}-1})π$C.$24-({\sqrt{2}+1})π$D.$24-({\sqrt{2}-1})π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.計算${({\frac{1+i}{1-i}})^{2017}}$=( 。
A.-1B.iC.-iD.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知命題p:?x∈R,2x+$\frac{1}{{2}^{x}}$>2,命題q:?x∈[0,$\frac{π}{2}$],使sinx+cosx=$\frac{1}{2}$,則下列命題中為真命題的是( 。
A.¬p∧¬qB.¬p∧qC.p∧¬qD.p∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知等比數(shù)列{an}的公比為q(q≠1),等差數(shù)列{bn}的公差也為q,且a1+2a2=3a3
(Ι)求q的值;
(II)若數(shù)列{bn}的首項為2,其前n項和為Tn,當n≥2時,試比較bn與Tn的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦點為F1,F(xiàn)2,且C上的點P滿足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,|PF1|=3,|PF2|=4,則雙曲線C的離心率為(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{5}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的兩個焦點為${F_1},{F_2},|{{F_1}{F_2}}|=2\sqrt{2}$,點A,B在橢圓上,F(xiàn)1在線段AB上,且△ABF2的周長等于$4\sqrt{3}$.
(1)求橢圓C的標準方程;
(2)過圓O:x2+y2=4上任意一點P作橢圓C的兩條切線PM和PN與圓O交于點M,N,求△PMN面積的最大值.

查看答案和解析>>

同步練習冊答案