2.已知函數(shù)f(x)(x∈R)的導(dǎo)函數(shù)為f′(x),滿足f(3)=7,f′(x)<2,則f(x)<2x+1的解集為(3,+∞).

分析 由f′(x)<2,則f(x)<2x+1可抽象出一個(gè)新函數(shù)g(x),利用新函數(shù)的性質(zhì)(單調(diào)性)解決問(wèn)題,即可得到答案.

解答 解:設(shè)g(x)=f(x)-(2x+1),
因?yàn)閒(3)=7,f′(x)<2,
所以g(3)=f(3)-(2×3+1)=0,
g′(x)=f′(x)-2<0,
所以g(x)在R上是減函數(shù),且g(3)=0.
所以f(x)<2x+1的解集即是g(x)<0=g(3)的解集.
所以x>3.
故答案為:(3,+∞).

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,解決此類問(wèn)題的關(guān)鍵是構(gòu)造函數(shù)g(x)=f(x)-(2x+1),然后利用導(dǎo)數(shù)研究g(x)的單調(diào)性,從而解決問(wèn)題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{1-i}{1+i}$的模為(  )
A.0B.$\sqrt{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=|2ax+1|,(a∈R),不等式f(x)≤3的解集{x|-2≤x≤1}.
(1)求a的值;
(2)若$|f(x)-2f(\frac{x}{2})|≤k$恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖所示,在直角梯形BECD中,A為線段CE上一點(diǎn),DC⊥EC,∠BAE=15°,∠DAC=60°,∠DBA=30°,AB=24m,則為CD=6$\sqrt{6}$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知tanα,$\frac{1}{tanα}$是關(guān)于x的方程x2-kx+k2-3=0的兩個(gè)實(shí)根,且3π<α<$\frac{7}{2}$π,則cosα+sinα=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.-$\sqrt{2}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知U={x∈N|x<6},P={2,4},Q={1,3,4,6},則(∁UP)∩Q=(  )
A.{3,4}B.{3,6}C.{1,3}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖,圓被其內(nèi)接三角形分為4塊,現(xiàn)有5種顏色準(zhǔn)備用來(lái)涂這4塊,要求每塊涂一種顏色,且相鄰兩塊的顏色不同,則不同的涂色方法有320種.(填數(shù)字)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知i是虛數(shù)單位,則i+|i|在復(fù)平面上對(duì)應(yīng)的點(diǎn)是( 。
A.(1,0)B.(0,1)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)(x∈R)滿足f(-x)=4-f(x),函數(shù)$g(x)=\frac{x-2}{x-1}+\frac{x}{x+1}$,若曲線y=f(x)與y=g(x)圖象的交點(diǎn)分別為(x1,y1),(x2,y2),(x3,y3),…,(xm,ym),則$\sum_{i=1}^m{({x_i}+{y_i})=}$2m(結(jié)果用含有m的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案