已知橢圓的中心在原點,焦點在x軸上,且長軸長為12,離心率為
1
3
,則橢圓的方程是( 。
A、
x2
144
+
y2
128
=1
B、
x2
36
+
y2
20
=1
C、
x2
32
+
y2
36
=1
D、
x2
36
+
y2
32
=1
分析:依題意可知c,進而根據(jù)離心率求得a,進而根據(jù)b2=a2-c2求得b20,則橢圓方程可得.
解答:解:由題意知,2a=12,a=6,
∴e=
c
a
=
c
6
=
1
3

∴c=2,
從而b2=a2-c2=32,
∴方程是
x2
36
+
y2
32
=1.
故選D.
點評:本題主要考查了橢圓的標準方程.解題的關(guān)鍵是熟練掌握橢圓標準方程中a,b和c之間的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在原點,焦點在x軸上,離心率為
2
2
,且橢圓經(jīng)過圓C:x2+y2-4x+2
2
y=0的圓心C.
(1)求橢圓的方程;
(2)設直線l過橢圓的焦點且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在原點O,焦點在坐標軸上,直線y=2x+1與該橢圓相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在原點,對稱軸為坐標軸,左焦點為F1(-3,0),右準線方程為x=
253

(1)求橢圓的標準方程和離心率e;
(2)設P為橢圓上第一象限的點,F(xiàn)2為右焦點,若△PF1F2為直角三角形,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在原點,且橢圓過點P(3,2),焦點在坐標軸上,長軸長是短軸長的3倍,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在原點,一個焦點F1(0,-2
2
),且離心率e滿足:
2
3
,e,
4
3
成等比數(shù)列.
(1)求橢圓方程;
(2)直線y=x+1與橢圓交于點A,B.求△AOB的面積.

查看答案和解析>>

同步練習冊答案