設(shè)橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e.已知點(diǎn)P到這個(gè)橢圓上的點(diǎn)的最遠(yuǎn)距離為,求這個(gè)橢圓的方程.

 

【答案】

設(shè)橢圓方程為=1(a>b>0),M(x,y)為橢圓上的點(diǎn),由a=2b.

|PM|2x2=-3+4b2+3(-byb),

b<,則當(dāng)y=-b時(shí),|PM|2最大,即=7,

b>,故舍去.

b時(shí),則當(dāng)y=-時(shí),|PM|2最大,即4b2+3=7,

解得b2=1.

∴所求方程為y2=1.

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=
3
2
.已知點(diǎn)P(0,
3
2
)
到這個(gè)橢圓上的點(diǎn)的最遠(yuǎn)距離為
7
,求這個(gè)橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱(chēng)軸,焦點(diǎn)在x軸上,一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且此焦點(diǎn)與長(zhǎng)軸上較近的端點(diǎn)距離為4 ( 
2
-1 )
,
(1)求此橢圓方程,并求出準(zhǔn)線方程;
(2)若P在左準(zhǔn)線l上運(yùn)動(dòng),求tan∠F1PF2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.已知點(diǎn)到這個(gè)橢圓上的點(diǎn)的最遠(yuǎn)距離為,求這個(gè)橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱(chēng)軸, 一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且此焦點(diǎn)與長(zhǎng)軸上較近的端點(diǎn)距離為-4,求此橢圓方程、離心率、準(zhǔn)線方程及準(zhǔn)線間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱(chēng)軸,一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且此焦點(diǎn)與長(zhǎng)軸上較近的端點(diǎn)距離為-4,求此橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案