【題目】下列說法中正確的是( )
A.若兩條直線互相平行,那么它們的斜率相等
B.方程能表示平面內(nèi)的任何直線
C.圓的圓心為,半徑為
D.若直線不經(jīng)過第二象限,則t的取值范圍是
【答案】BD
【解析】
由兩直線平行于軸排除;根據(jù)直線平行或不平行于坐標(biāo)軸,可確定方程均可以表示出來,知正確;整理得到圓的標(biāo)準(zhǔn)方程,進(jìn)而確定圓心和半徑,排除;由直線不過第二象限可構(gòu)造不等式組求得結(jié)果,知正確.
對于,若兩條直線均平行于軸,則兩條直線斜率都不存在,錯誤;
對于,若直線不平行于坐標(biāo)軸,則原方程可化為,為直線兩點(diǎn)式方程;當(dāng)直線平行于軸,則原方程可化為;當(dāng)直線平行于軸,則原方程可化為;
綜上所述:方程能表示平面內(nèi)的任何直線,正確;
對于,圓的方程可整理為,則圓心為,錯誤;
對于,若直線不經(jīng)過第二象限,則,解得:,正確.
故選:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.且滿足4cos2cos2(B+C).
(1)求角A;
(2)若△ABC的面積為,周長為8,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院為促進(jìn)行風(fēng)建設(shè),擬對醫(yī)院的服務(wù)質(zhì)量進(jìn)行量化考核,每個患者就醫(yī)后可以對醫(yī)院進(jìn)行打分,最高分為100分.上個月該醫(yī)院對100名患者進(jìn)行了回訪調(diào)查,將他們按所打分?jǐn)?shù)分成以下幾組:第一組,第二組,第三組,第四組,第五組,得到頻率分布直方圖,如圖所示.
(1)求所打分?jǐn)?shù)不低于60分的患者人數(shù);
(2)該醫(yī)院在第二三組患者中按分層抽樣的方法抽取6名患者進(jìn)行深入調(diào)查,之后將從這6人中隨機(jī)抽取2人聘為醫(yī)院行風(fēng)監(jiān)督員,求行風(fēng)監(jiān)督員來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)定義域?yàn)?/span>R,對于任意R恒有.
(1)若,求的值;
(2)若時,,求函數(shù),的解析式及值域;
(3)若時,,求在區(qū)間,上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·臨川一中]海盜船是一種繞水平軸往復(fù)擺動的游樂項(xiàng)目,因其外形仿照古代海盜船而得名.現(xiàn)有甲、乙兩游樂場統(tǒng)計(jì)了一天6個時間點(diǎn)參與海盜船游玩的游客數(shù)量,具體數(shù)據(jù)如表:
時間點(diǎn) | 8點(diǎn) | 10點(diǎn) | 12點(diǎn) | 14點(diǎn) | 16點(diǎn) | 18點(diǎn) |
甲游樂場 | 10 | 3 | 12 | 6 | 12 | 20 |
乙游樂場 | 13 | 4 | 3 | 2 | 6 | 19 |
(1)從所給6個時間點(diǎn)中任選一個,求參與海盜船游玩的游客數(shù)量甲游樂場比乙游樂場少的概率;
(2)記甲、乙兩游樂場6個時間點(diǎn)參與海盜船游玩的游客數(shù)量分別為,(),現(xiàn)從該6個時間點(diǎn)中任取2個,求恰有1個時間點(diǎn)滿足的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐代詩人李欣的是古從軍行開頭兩句說“百日登山望烽火,黃昏飲馬傍交河”詩中隱含著一個有缺的數(shù)學(xué)故事“將軍飲馬”的問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回到軍營,怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營所在區(qū)域?yàn)?/span>,若將軍從出發(fā),河岸線所在直線方程,并假定將軍只要到達(dá)軍營所在區(qū)域即回到軍營,則“將軍飲馬”的最短總路程為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐的底面ABCD是邊長為a的菱形,面ABCD,,E,F分別是CD,PC的中點(diǎn).
(1)求證:平面平面PAB;
(2)M是PB上的動點(diǎn),EM與平面PAB所成的最大角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 底面, , ∥, , .
(1)求證:平面 平面;
(2)若棱上存在一點(diǎn),使得二面角的余弦值為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】標(biāo)號為0到9的10瓶礦泉水.
(1)從中取4瓶,恰有2瓶上的數(shù)字相鄰的取法有多少種?
(2)把10個空礦泉水瓶掛成如下4列的形式,作為射擊的靶子,規(guī)定每次只能射擊每列最下面的一個(射中后這個空瓶會掉到地下),把10個礦泉水瓶全部擊中有幾種不同的射擊方案?
(3)把擊中后的礦泉水瓶分送給A、B、C三名垃圾回收人員,每個瓶子1角錢.垃圾回收人員賣掉瓶子后有幾種不同的收入結(jié)果?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com