分析 先根據(jù)d=4,分別求出a2=6,a3=10,則a1,a2,a3不成等比數(shù)列,再根據(jù)若a1,a2,a3成等比數(shù)列,求得d=0,再根據(jù)充分必要條件的得以判斷即可.

解答 解:a1=2,公差為d,則“d=4”,
則a2=2+4=6,a3=2+8=10,則a1,a2,a3不成等比數(shù)列,
若a1,a2,a3成等比數(shù)列,
∴(2+d)2=2(2+2d),
解得d=0,
故“d=4”是“a1,a2,a3成等比數(shù)列”既不充分也不必要條件,
故選:D

點評 本題考查充分條件、必要條件的定義,等差數(shù)列的定義,等比數(shù)列的定義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z=(cosθ-isinθ)(1+i),則“θ=$\frac{3π}{4}$”是“z為純虛數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=sinx+cosx在點(0,f(0))處的切線方程為x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若函數(shù)f(x)=|x-1|+2|x-a|.
(I)當(dāng)a=1時,解不等式f(x)<5;
(II)f(x)的最小值為5,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.去年“十•一”期間,昆曲高速公路車輛較多.某調(diào)查公司在曲靖收費站從7座以下小型汽車中按進(jìn)收費
站的先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛汽車進(jìn)行抽樣調(diào)查,將他們在某段高速公
路的車速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90)后,得到如圖的頻率分布直方圖.
(I)調(diào)查公司在抽樣時用到的是哪種抽樣方法?
(II)求這40輛小型汽車車速的眾數(shù)和中位數(shù)的估計值;
(III)若從這40輛車速在[60,70)的小型汽車中任意抽取2輛,求抽出的2輛車車速都在[65,70)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(tanx)=cos(2x+$\frac{π}{3}$)-1,則f($\sqrt{3}$)=(  )
A.0B.$-\sqrt{3}$C.$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f(x)是定義在R上的周期為2的函數(shù),且是偶函數(shù),已知當(dāng)x∈[2,3]時,f(x)=x,則當(dāng)x∈[-2,0]時,f(x)的解析式是f(x)=3-|x+1|(x∈[-2,0]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)在極坐標(biāo)系中,求點(2,$\frac{π}{3}$)到直線ρ(cosθ+$\sqrt{3}$sinθ)=6的距離;
(2)已知直線l的方程為y=x+2,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ=4(ρ>0,$\frac{3π}{4}$<θ<$\frac{5π}{4}$),求直線l與曲線C的交點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知lga+lgb=0,則滿足不等式$\frac{a}{{a}^{2}+1}$+$\frac{^{2}+1}$≤λ的實數(shù)λ的取值范圍是[$\frac{1}{4}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案