已知數(shù)列{an}的通項(xiàng)公式是an,若前n項(xiàng)和為10,則項(xiàng)數(shù)n為(  ).
A.11B.99C.120D.121
C
an
Sna1a2+…+an=(-1)+()+…+()=-1.
-1=10,得n=120.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,an+1n2n,n∈N*.
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于數(shù)列{an},定義數(shù)列{an+1-an}為數(shù)列{an}的“差數(shù)列”,若a1=2,{an}的“差數(shù)列”的通項(xiàng)為2n,則數(shù)列{an}的前n項(xiàng)和Sn=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}的前n項(xiàng)和Sn=n2-7n,且滿足16<ak+ak+1<22,則正整數(shù)k=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知無窮數(shù)列{an}的各項(xiàng)均為正整數(shù),Sn為數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}是等差數(shù)列,且對(duì)任意正整數(shù)n都有Sn3=(Sn)3成立,求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)任意正整數(shù)n,從集合{a1,a2,…,an}中不重復(fù)地任取若干個(gè)數(shù),這些數(shù)之間經(jīng)過加減運(yùn)算后所得數(shù)的絕對(duì)值為互不相同的正整數(shù),且這些正整數(shù)與a1,a2,…,an一起恰好是1至Sn全體正整數(shù)組成的集合.
(ⅰ)求a1,a2的值;
(ⅱ)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè){an}是公差不為0的等差數(shù)列,a1=2且a1,a3,a6成等比數(shù)列,則{an} 的前n項(xiàng)和Sn=(  ).
A.B.C.D.n2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列{an}中,若a2a3=4,a4a5=6,則a9a10等于(  ).
A.9B.10 C.11 D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的通項(xiàng)公式為an=3n-1,在等差數(shù)列{bn}中,bn>0(n∈N*),且b1b2b3=15,又a1b1a2b2,a3b3成等比數(shù)列.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an·bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列{an}中,a1a5=10,a4=7,則數(shù)列{an}的公差為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案