【題目】如圖,四棱錐的底面是正方形, 平面,,點(diǎn)是上的點(diǎn),且 .
(1)求證:對(duì)任意的 ,都有.
(2)設(shè)二面角C-AE-D的大小為 ,直線BE與平面所成的角為 ,
若,求的值.
【答案】(1)見解析; (2).
【解析】
(1)因?yàn)?/span>SD⊥平面ABCD,BD是BE在平面ABCD上的射影,由三垂線定理只要證AC
⊥BD即可.(2)先找出θ計(jì)算出cosθ,再找到,求出點(diǎn)O到BE的距離,再求出sin,解
方程得到的值.
(1)證明:連接BE、BD,由底面ABCD是正方形可得AC⊥BD.
∵SD⊥平面ABCD,∴BD是BE在平面ABCD上的射影,∴AC⊥BE
(2)解:由SD⊥平面ABCD知,∠DBE=φ,
∵SD⊥平面ABCD,CD平面ABCD,∴SD⊥CD.
又底面ABCD是正方形,∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD.
連接AE、CE,過點(diǎn)D在平面SAD內(nèi)作DF⊥AE于F,連接CF,則CF⊥AE,
故∠CFD是二面角C﹣AE﹣D的平面角,即∠CFD=θ.
在Rt△ADE中,∵AD=a,DE=λa∴AE=a
從而DF==
在Rt△CDF中,tanθ==,所以.
過點(diǎn)B作EO的垂線BG,因?yàn)?/span>AC⊥平面BDE,所以AC⊥BG,
所以∠BEO就是直線BE與平面所成的角,
設(shè)點(diǎn)O到BE的距離為h,則由等面積得
所以,
因?yàn)?/span>,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有12個(gè)球,其中5個(gè)紅球,4個(gè)黑球,2個(gè)白球,1個(gè)綠球.從中隨機(jī)取出1球,求:
(1)取出1球是紅球或黑球的概率;
(2)取出1球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為半圓的直徑,點(diǎn)是半圓弧上的兩點(diǎn), , .曲線經(jīng)過點(diǎn),且曲線上任意點(diǎn)滿足: 為定值.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)過點(diǎn)的直線與曲線交于不同的兩點(diǎn),求面積最大時(shí)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù), .
(1)試討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)是棱長為2的正方體的棱的中點(diǎn),點(diǎn)在面所在的平面內(nèi),若平面分別與平面和平面所成的銳二面角相等,則點(diǎn)到點(diǎn)的最短距離是( )
A. B. C. 1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知p:方程有兩個(gè)不等的負(fù)實(shí)根,q:方程
無實(shí)根,若為真,為假,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺(tái)的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問題:
(1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);
(2)工廠生產(chǎn)多少臺(tái)產(chǎn)品時(shí),可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A. 命題“”,則:“”
B. 命題“若,則”的否命題是真命題
C. 若為假命題,則為假命題
D. 若是的充分不必要條件,則是的必要不充分條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com