已知定點A(-2,-4),過點A作傾斜角為45 的直線l,交拋物線y2=2px(p>0)于B、C兩點,且|BC|=210.(Ⅰ)求拋物線的方程;(Ⅱ)在(Ⅰ)中的拋物線上是否存在點D,使得|DB|=|DC|成立?如果存在,求出點D的坐標;如果不存在,請說明理由.

(Ⅰ)  y2=2x.  (Ⅱ)   見解析


解析:

(Ⅰ)直線l方程為y=x-2,將其代入y2=2px,并整理,得

x2-2(2+p)x+4=0…①,∵p>0,∴△=4(2+p)2-16>0,

設(shè)B(x1,y1)、C(x2,y2),∴x1+x2=4+2p,x1·x2=4,∵|BC|=210,而|BC|=1+k2|x1-x2|,

∴22p2+4p=210,解得p=1,∴拋物線方程y2=2x.

(Ⅱ)假設(shè)在拋物線y2=2x上存在點D(x3,y3),使得|DB|=|DC|成立,

記線段BC中點為E(x0,y0),則|DB|=|DC| DE⊥BC kDE=-1k1=-1,

當p=1時,①式成為x2-6x+4=0,∴x0=x1+x22=3,y0=x0-2=1,

∴點D(x3,y3)應滿足   y23=2x3y3-1x3-3=-1,解得  x3=2y3=2或  x3=8y3=-4.

∴存在點D(2,2)或(8,-4),使得|DB|=|DC|成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知定點A(2,0),P點在圓x2+y2=1上運動,∠AOP的平分線交PA于Q點,其中O為坐標原點,求Q點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定點A(2,-5),動點B在直線2x-y+3=0上運動,當線段AB最短時,求B的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定點A(2,0),圓O的方程為x2+y2=8,動點M在圓O上,那么∠OMA的最大值是( 。
A、
π
6
B、
π
4
C、arccos
2
3
D、arccos
2
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定點A(-2,0),B(2,0),曲線E上任一點P滿足|PA|-|PB|=2.
(1)求曲線E的方程;
(2)延長PB與曲線E交于另一點Q,求|PQ|的最小值;
(3)若直線l的方程為x=a(a≤
12
),延長PB與曲線E交于另一點Q,如果存在某一位置,使得PQ的中點R在l上的射影C滿足PC⊥QC,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石家莊一模)在平面直角坐標系xOy中,已知定點A(-2,0)、B(2,0),M是動點,且直線MA與直線MB的斜率之積為-
1
4
,設(shè)動點M的軌跡為曲線C.
(I)求曲線C的方程;
(II )過定點T(-1,0)的動直線l與曲線C交于P,Q兩點,是否存在定點S(s,0),使得
SP
SQ
為定值,若存在求出s的值;若不存在請說明理由.

查看答案和解析>>

同步練習冊答案