已知二次函數(shù)f(x)=ax2+(a2+2)x-
14
在x=2處的切線斜率為2,則該函數(shù)的最大值為
20
20
分析:求出f′(x),因為函數(shù)在x=2處切線的斜率為2,得到f′(2)=2,列出關(guān)于a的方程可求出a的值,把a的值代入f(x)中得到二次函數(shù)的解析式,根據(jù)二次函數(shù)求最值的方法即可求出函數(shù)的最大值.
解答:解:f′(x)=2ax+a2+2,
因為二次函數(shù)在x=2處的切線斜率為2,
則f′(2)=2即4a+a2+2=2,解得a=0(舍去),a=-4
把a=-4代入得f(x)=-4x2+18x-
1
4
,
此二次函數(shù)是開口向下的拋物線,
所以當x=-
18
2×(-4)
=
9
4
時,函數(shù)的最大值為
4×(-4)×(-
1
4
)-182
4×(-4)
=20
故答案為:20
點評:此題考查學生會利用導數(shù)求曲線上過某點切線方程的斜率,會利用函數(shù)的圖象求二次函數(shù)的最值,是一道中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+
1
2
滿足f(1+x)=f(1-x)且方程f(x)=
5
2
-x
有等根
(1)求f(x)的表達式;
(2)若f(x)在定義域(-1,t]上的值域為(-1,1],求t的取值范圍;
(3)是否存在實數(shù)m、n(m<n),使f(x)定義域和值域分別為[m,n]和[2m,2n],若存在,求出m、n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,函數(shù)y=f(x)+
2
3
x-1
的圖象過原點且關(guān)于y軸對稱,記函數(shù) h(x)=
x
f(x)

(I)求b,c的值;
(Ⅱ)當a=
1
10
時,求函數(shù)y=h(x)
的單調(diào)遞減區(qū)間;
(Ⅲ)試討論函數(shù) y=h(x)的圖象上垂直于y軸的切線的存在情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不相等的實根,當a>0時判斷f(x)在(-1,1)上的單調(diào)性;
(3)若方程g(x)=x的兩實根為x1,x2f(x)=0的兩根為x3,x4,求使x3<x1<x2<x4成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=
-x2-x+2
的定義域為A,若對任意的x∈A,不等式x2-4x+k≥0成立,則實數(shù)k的最小值為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不相等的實根,當a>0時判斷f(x)在(-1,1)上的單調(diào)性;
(3)當b=2a時,問是否存在x的值,使?jié)M足-1≤a≤1且a≠0的任意實數(shù)a,不等式f(x)<4恒成立?并說明理由.

查看答案和解析>>

同步練習冊答案