已知橢圓經(jīng)過(guò)點(diǎn)M(1,),其離心率為

(1)求橢圓C的方程;

(2)設(shè)直線l與橢圓C相交于A,B兩點(diǎn),以線段OA,OB為鄰邊作平行四邊形OAPB,其中頂點(diǎn)P在橢圓C上,O為坐標(biāo)原點(diǎn).求O到直線l的距離的最小值.

答案:
解析:

  (1)  (4分)

  (2)當(dāng)直線有斜率時(shí),設(shè),由消去,得

  

   、

  設(shè)三點(diǎn)的坐標(biāo)分別為,則以線段為鄰邊作平行四邊形,  (6分)

  

  由于點(diǎn)在橢圓上,所以,從而,化簡(jiǎn)得

  ,經(jīng)檢驗(yàn)滿足①式

  又點(diǎn)到直線的距離為

  當(dāng)且僅當(dāng)時(shí)等號(hào)成立  (10分)

  當(dāng)直線無(wú)斜率時(shí),由對(duì)稱性知,點(diǎn)一定在軸上,從而點(diǎn),直線,所以點(diǎn)到直線的距離為1.

  綜上,點(diǎn)到直線的距離的最小值為  (12分)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省唐山市高三上學(xué)期摸底考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

(本小題滿分12分)

已知橢圓經(jīng)過(guò)點(diǎn)M(-2,-1),離心率為。過(guò)點(diǎn)M作傾斜角

 

互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q。

(I)求橢圓C的方程;

(II)能否為直角?證明你的結(jié)論;

(III)證明:直線PQ的斜率為定值,并求這個(gè)定值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆福建省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分)已知橢圓經(jīng)過(guò)點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線ly軸上的截距為mm≠0) 

(1)當(dāng) 時(shí),判斷直線l與橢圓的位置關(guān)系;

(2)當(dāng)時(shí),P為橢圓上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最小值;

(3)如圖,當(dāng)l交橢圓于A、B兩個(gè)不同點(diǎn)時(shí),求證:

直線MA、MB與x軸始終圍成一個(gè)等腰三角形 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓數(shù)學(xué)公式經(jīng)過(guò)點(diǎn)M(-2,-1),離心率為數(shù)學(xué)公式.過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.
(I)求橢圓C的方程;
(II)∠PMQ能否為直角?證明你的結(jié)論;
(III)證明:直線PQ的斜率為定值,并求這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年江西省吉安市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn)M(-2,-1),離心率為.過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于M的另外兩點(diǎn)P、Q.
(I)求橢圓C的方程;
(II)∠PMQ能否為直角?證明你的結(jié)論;
(III)證明:直線PQ的斜率為定值,并求這個(gè)定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案