過點A(2,1)作曲線f(x)=的切線l.
(Ⅰ)求切線l的方程;
(Ⅱ)求切線l,x軸及曲線所圍成的封閉圖形的面積S.
【答案】分析:(I)欲求在點(2,1)處的切線方程,只須求出其斜率的值即可,故先利用導數(shù)求出在x=2處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
(II)欲求封閉圖形的面積,利用定積分的幾何意義求面積,由(I)知在點A處的切線方程,只須求出積分的上下限即可,故先利用令=0和令y=x-1=0,再結合圖象特征即得,最后定積分公式計算即得.
解答:解:(Ⅰ)∵,∴f'(2)=1,
∴切線l的方程為y-1=x-2,即y=x-1.(4分)
(Ⅱ)令=0,則.令y=x-1=0,則x=1.
∴A===.(10分)
故封閉圖形的面積S=
點評:本小題主要考查直線的斜率、導數(shù)的幾何意義、利用導數(shù)研究曲線上某點切線方程、定積分的幾何意義等基礎知識,考查運算求解能力.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過點A(2,1)作曲線f(x)=x3-x的切線的條數(shù)最多是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點A(2,1)作曲線f(x)=e2x-4的切線l.
(Ⅰ)求切線l的方程;
(Ⅱ)求切線l,x軸,y軸及曲線所圍成的封閉圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點A(2,1)作曲線f(x)=
2x-3
的切線l.
(Ⅰ)求切線l的方程;
(Ⅱ)求切線l,x軸及曲線所圍成的封閉圖形的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年江蘇省南通市啟東中學高三5月考前輔導特訓數(shù)學試卷(理科)(解析版) 題型:解答題

過點A(2,1)作曲線f(x)=的切線l.
(Ⅰ)求切線l的方程;
(Ⅱ)求切線l,x軸及曲線所圍成的封閉圖形的面積S.

查看答案和解析>>

同步練習冊答案