關(guān)于函數(shù),有下列命題
①其圖象關(guān)于y軸對稱;
②當(dāng)x>0時,f(x)是增函數(shù);當(dāng)x<0時,f(x)是減函數(shù);
③f(x)的最小值是lg2;
④f(x)在區(qū)間(-1,0)、(2,+∞)上是增函數(shù);
⑤f(x)無最大值,也無最小值
其中所有正確結(jié)論的序號是   
【答案】分析:①判斷函數(shù)是否為偶函數(shù)即可.
②將復(fù)合函數(shù)轉(zhuǎn)化為兩個基本函數(shù),令t=(x>0),易知在(0,1]上是減函數(shù),在[1,+∞)上是增函數(shù).
③因為t=≥2(x>0),再由偶函數(shù),可知正確.
④當(dāng)-1<x<0或x>1時函數(shù)t=是增函數(shù),再根據(jù)復(fù)合函數(shù)判斷.
⑤用③來判斷.
解答:解:①定義域為R,又滿足f(-x)=f(x),所以函數(shù)y=f(x)的圖象關(guān)于y軸對稱,正確.
②令t=(x>0),在(0,1]上是減函數(shù),在[1,+∞)上是增函數(shù),不正確.
③t=≥2,又是偶函數(shù),所以函數(shù)f(x)的最小值是lg2,正確.
④當(dāng)-1<x<0或x>1時函數(shù)t=是增函數(shù),根據(jù)復(fù)合函數(shù)知,f(x)是增函數(shù),正確.
⑤由③知,不正確.
故答案為:①③④
點評:本小題主要考查對數(shù)函數(shù)的單調(diào)性與特殊點、對數(shù)函數(shù)的值域與最值等基礎(chǔ)知識,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省宜賓三中高一(上)期末數(shù)學(xué)復(fù)習(xí)試卷(一)(解析版) 題型:填空題

關(guān)于函數(shù),有下列命題:①f(x)的最大值為;②f(x)是以π為最小正周期的周期函數(shù);③f(x)在區(qū)間()上單調(diào)遞減;④將函數(shù)y=cos2x的圖象向左平移個單位后,將與f(x)的圖象重合,其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省南平八中高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

關(guān)于函數(shù),有下列命題
①其最小正周期為;
②其圖象由y=2sin3x向右平移個單位而得到;
③其表達(dá)式寫成
④在為單調(diào)遞增函數(shù);
則其中真命題為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市渝東片區(qū)部分重點中學(xué)高三(下)第一次檢測數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

關(guān)于函數(shù),有下列命題:
①其表達(dá)式可寫成;
②直線圖象的一條對稱軸;
③f(x)的圖象可由g(x)=sin2x的圖象向右平移個單位得到;
④存在α∈(0,π),使f(x+α)=f(x+3α)恒成立
則其中真命題為( )
A.②③
B.①②
C.②④
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三上學(xué)期第十次測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

關(guān)于函數(shù),有下列命題:

  ①其圖象關(guān)于軸對稱; ②當(dāng)時,是增函數(shù);當(dāng)時,是減函數(shù);

  ③的最小值是;   ④當(dāng)時,分別是增函數(shù);

其中所有正確結(jié)論的序號是         .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三9月月考文科數(shù)學(xué)試卷 題型:填空題

關(guān)于函數(shù),有下列命題:

 

的表達(dá)式可以變換成;

 

是以為最小正周期的周期函數(shù);

的圖象關(guān)于點對稱;    ④的圖象關(guān)于直線對稱.

 

其中正確命題的序號是  ­­­­

 

查看答案和解析>>

同步練習(xí)冊答案