精英家教網 > 高中數學 > 題目詳情

【題目】已知四個命題:

①如果向量共線,則;

的充分不必要條件;

③命題的否定是,

④“指數函數是增函數,而是指數函數,所以是增函數”此三段論大前提錯誤,但推理形式是正確的.

以上命題正確的個數為( )

A.0B.1C.2D.3

【答案】B

【解析】

由向量共線定理可判斷;由充分必要條件的定義可判斷;由特稱命題的否定為全稱命題,可判斷;由指數函數的單調性可判斷

,如果向量共線,可得xy,不一定,故錯誤;

|x|33x3,x3不能推得|x|3,但|x|3能推得x3,

x3|x|3的必要不充分條件,故錯誤;

,命題px002),的否定

是¬px0,2),x22x30,故錯誤;

,“指數函數yax是增函數,而是指數函數,所以是增函數”

由于a1時,yax為增函數,0a1時,yax為減函數,此三段論大前提錯誤,但推理形式是正確的,故正確.其中正確個數為1

故選:B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為正方形,,且中點.

(1)證明://平面;

(2)證明:平面平面;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了分析某個高三學生的學習狀態(tài),對其下一階段的學習提供指導性建議.現對他前7次考試的數學成績、物理成績進行分析.下面是該生7次考試的成績.

數學

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

(1)他的數學成績與物理成績哪個更穩(wěn)定?請給出你的證明;

(2)已知該生的物理成績與數學成績是線性相關的,若該生的物理成績達到115分,請你估計他的數學成績大約是多少?并請你根據物理成績與數學成績的相關性,給出該生在學習數學、物理上的合理建議.

參考公式:方差公式:,其中為樣本平均數.,。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預賽和決賽兩個階段.下表為10名學生的預賽成績,其中有三個數據模糊.

學生序號

1

2

3

4

5

6

7

8

9

10

立定跳遠(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳繩(單位:次)

63

a

75

60

63

72

70

a1

b

65

在這10名學生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則

A2號學生進入30秒跳繩決賽

B5號學生進入30秒跳繩決賽

C8號學生進入30秒跳繩決賽

D9號學生進入30秒跳繩決賽

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】這是今年雙十一的兩道題目,第一題是雙十一之前網上流傳甚廣的小明買衛(wèi)衣問題,第二題是有關某老師的雙十一戰(zhàn)果.

1)小明想在雙十一買價值399的衛(wèi)衣,已知付定金20元有訂金三倍膨脹活動,但僅限當天02點,2點以后訂金可抵用50元,但有付尾款前500名免定金活動,同時該店鋪有3992029910的優(yōu)惠券(其使用門檻是訂金尾款訂金膨脹優(yōu)惠金額大于等于優(yōu)惠券),還有一種3792027910的折扣券(其使用門檻是尾款膨脹優(yōu)惠金額大于等于折扣券面額),優(yōu)惠和折扣只能選一種,求小明最低多少錢能買到這件衛(wèi)衣?如果你是小明,你會選擇怎樣購買?

2)某老師在雙十一前花1元,搶到了某商家滿的一張優(yōu)惠券,該商家沒有訂金膨脹活動,但該商家有多買多優(yōu)惠活動:滿39折,58折,10件及以上7折,同時可用淘寶的購物津貼(可跨店滿減,店鋪優(yōu)惠后參加該活動,但運費不在其中),現已知該老師本單共花了元(1是買券錢,119.78是雙十一付款,其中含運費6元).

請問:該老師本次購買的商品價值最低多少?最高多少?(按商家標示的淘寶價格計算,精確到元即可,已知該老師用了券)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)求的極值;

(Ⅱ)當時,設,求證:曲線存在兩條斜率為且不重合的切線.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,為等邊三角形,是線段上的一點,且平面.

(1)求證:的中點;

(2)若的中點,連接,,平面平面,,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

設函數.

(Ⅰ)求的最小值及取得最小值時的取值范圍;

(Ⅱ)若集合,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求的單調區(qū)間;

(2)記的最大值為,若,求證:;

(3)若,記集合中的最小元素為,設函數,求證:的極小值點.

查看答案和解析>>

同步練習冊答案