若一元二次方程ax2+bx+c=0(a>0)的兩根x1、x2滿足m<x1<n<x2<p,則f(m)•f(n)•f(p) 0(填“>”、“=”或“<”).
【答案】分析:要判斷f(m)•f(n)•f(p)的符號,我們逐一判斷f(m),f(n),f(p)的符號,這時我們要根據(jù)一元二次方程圖象及性質進行解答,由一元二次方程ax2+bx+c=0(a>0)的兩根x1、x2,我們易得在區(qū)間(-∞,x1)上,函數(shù)值大于0;在區(qū)間(x1,x2)上,函數(shù)值小于0;在區(qū)間(x2,-∞)上,函數(shù)值大于0;再結合m<x1<n<x2<p我們不難得到答案.
解答:解:∵a>0,
∴f(x)=ax2+bx+c的圖象開口向上.
且在區(qū)間(-∞,x1)上,函數(shù)值大于0;
在區(qū)間(x1,x2)上,函數(shù)值小于0;
在區(qū)間(x2,-∞)上,函數(shù)值大于0;
∵m<x1<n<x2<p,
∴f(m)>0,f(n)<0,f(p)>0.
∴f(m)•f(n)•f(p)<0
故答案為:<
點評:若一元二次方程ax2+bx+c=0(a>0)的兩根為x1、x2:
則在區(qū)間(-∞,x1)上,函數(shù)值大于0;
在區(qū)間(x1,x2)上,函數(shù)值小于0;
在區(qū)間(x2,-∞)上,函數(shù)值大于0;
若一元二次方程ax2+bx+c=0(a<0)的兩根為x1、x2:
則在區(qū)間(-∞,x1)上,函數(shù)值小于0;
在區(qū)間(x1,x2)上,函數(shù)值大于0;
在區(qū)間(x2,-∞)上,函數(shù)值小于0;