【題目】已知x1 , x2是方程e﹣x+2=|lnx|的兩個解,則( )
A.0<x1x2<
B. <x1x2<1
C.1<x1x2<e
D.x1x2>e
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計出這些試卷總分,由總分得到如下的頻率分布直方圖.
(1)求這100份數(shù)學(xué)試卷的樣本平均分 和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(2)由直方圖可以認為,這批學(xué)生的數(shù)學(xué)總分Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù) ,σ2近似為樣本方差s2 . ①利用該正態(tài)分布,求P(81<z<119);
②記X表示2400名學(xué)生的數(shù)學(xué)總分位于區(qū)間(81,119)的人數(shù),利用①的結(jié)果,求EX(用樣本的分布區(qū)估計總體的分布).
附: ≈19, ≈18,若Z=~N(μ,2),則P(μ﹣σ2),則P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分別是AB,AC的中點.
(1)求證:B1C1∥平面A1DE;
(2)求證:平面A1DE⊥平面ACC1A1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx+cosωx的最小正周期為π,x∈R,ω>0是常數(shù).
(1)求ω的值;
(2)若f(+)= , θ∈(0,),求sin2θ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形, ,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,E是AB中點.
(Ⅰ)求證:直線AM∥平面PNC;
(Ⅱ)求證:直線CD⊥平面PDE;
(III)在AB上是否存在一點G,使得二面角G﹣PD﹣A的大小為 ,若存在,確定G的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在(1,+∞)上是增函數(shù),且a>0.
(Ⅰ)求a的取值范圍;
(Ⅱ)求函數(shù)g(x)=ln(1+x)﹣x在[0,+∞)上的最大值;
(Ⅲ)已知a>1,b>0,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線x2﹣ =1的左右焦點分別為F1、F2 , 過點F2的直線交雙曲線右支于A,B兩點,若△ABF1是以A為直角頂點的等腰三角形,則△AF1F2的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足(a﹣b)(sinA+sinB)=(c﹣b)sinC,若 ,則b2+c2的取值范圍是( )
A.(5,6]
B.(3,5)
C.(3,6]
D.[5,6]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品特約經(jīng)銷商根據(jù)以往當(dāng)?shù)氐男枨笄闆r,得出如圖該種產(chǎn)品日需求量的頻率分布直方圖.
(1)求圖中a的值,并估計日需求量的眾數(shù);
(2)某日,經(jīng)銷商購進130件該種產(chǎn)品,根據(jù)近期市場行情,當(dāng)天每售出1件能獲利30元,未售出的部分,每件虧損20元.設(shè)當(dāng)天的需求量為x件(100≤x≤150),純利潤為S元.
(。⿲表示為x的函數(shù);
(ⅱ)根據(jù)直方圖估計當(dāng)天純利潤S不少于3400元的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com