已知數(shù)列{an}中,a1=1,an=3an-1+4,(n∈N*且n≥2),則數(shù)列{an}通項(xiàng)公式an=
3n-2
3n-2
分析:由題意知an+2=3(an-1+2),判斷{an+2}是等比數(shù)列,由此求出通項(xiàng)公式.
解答:解:∵an=3an-1+4,∴an+2=3(an-1+2),
∵a1+2=3,∴{an+2}是公比為3,首項(xiàng)是4的等比數(shù)列,即an+2=3×3n-1,
an=3n-2.
故答案為:3n-2.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,合理地進(jìn)行構(gòu)造新數(shù)列是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案