【題目】下列命題一定正確的是( )
A.在等差數列{an}中,若ap+aq=ar+aδ , 則p+q=r+δ
B.已知數列{an}的前n項和為Sn , 若{an}是等比數列,則Sk , S2k﹣Sk , S3k﹣S2k也是等比數列
C.在數列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數列
D.在數列{an}中,若ap?aq=a ,則ap , ar , aq成等比數列
【答案】C
【解析】解:A.在等差數列{an}中,若ap+aq=ar+aδ , 公差d=0,則p+q=r+δ不一定正確;
B.在數列{an}的前n項和為Sn , 若{an}是等比數列,必須Sk , S2k﹣Sk , S3k﹣S2k是不等于0時,成Sk , S2k﹣Sk , S3k﹣S2k也是等比數列,因此不正確;
C.在數列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數列,正確;
D.在數列{an}中,若apaq=a ,則ap , ar , aq不一定成等比數列,沒有條件an≠0.
故選:C.
【考點精析】關于本題考查的等差關系的確定和等比關系的確定,需要了解如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,即-=d ,(n≥2,n∈N)那么這個數列就叫做等差數列;等比數列可以通過定義法、中項法、通項公式法、前n項和法進行判斷才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】若實數x,y滿足:x2+y2﹣2x﹣2y=0,則x+y的取值范圍是( )
A.[﹣4,0]
B.[2﹣2 ,2+2 ]
C.[0,4]
D.[﹣2﹣2 ,﹣2+2 ]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 經過點 ,且離心率為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設A,B是橢圓C的左,右頂點,P為橢圓上異于A,B的一點,以原點O為端點分別作與直線AP和BP平行的射線,交橢圓C于M,N兩點,求證:△OMN的面積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,已知曲線C1的參數方程為 ,(α為參數,且α∈[0,π)),曲線C2的極坐標方程為ρ=﹣2sinθ.
(1)求C1的極坐標方程與C2的直角坐標方程;
(2)若P是C1上任意一點,過點P的直線l交C2于點M,N,求|PM||PN|的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知實數x、y滿足 ,目標函數z=x+ay.
(1)當a=﹣2時,求目標函數z的取值范圍;
(2)若使目標函數取得最小值的最優(yōu)解有無數個,求 的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數列,并求{an}的通項公式;
(2)證明: + +…+ < .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某房地產開發(fā)公司計劃在一樓區(qū)內建造一個長方形公園ABCD,公園由長方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米.
(1)若設休閑區(qū)的長A1B1=x米,求公園ABCD所占面積S關于x的函數S(x)的解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬該如何設計?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=x|x﹣a|+2x﹣3,其中a∈R
(1)當a=4,2≤x≤5時,求函數f(x)的最大值和最小值,并寫出相應的x的值.
(2)若f(x)在R上恒為增函數,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現對100名五年級學生進行了問卷調查,得到如下2×2列聯表,平均每天喝500ml以上為常喝,體重超過50kg為肥胖.
不常喝 | 常喝 | 合計 | |
肥胖 | x | y | 50 |
不肥胖 | 40 | 10 | 50 |
合計 | A | B | 100 |
現從這100名兒童中隨機抽取1人,抽到不常喝碳酸飲料的學生的概率為
(1)求2×2列聯表中的數據x,y,A,B的值;
(2)根據列聯表中的數據繪制肥胖率的條形統計圖,并判斷常喝碳酸飲料是否影響肥胖?
(3)是否有99.9%的把握認為肥胖與常喝碳酸飲料有關?說明你的理由. 附:參考公式:K2= ,其中n=a+b+c+d.
臨界值表:
P(K2≥k) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com