已知函數(shù)f(x)=lg(ax2+2x+1),

(1)若f(x)的定義域為R,求實數(shù)a的范圍;

(2)若f(x)的值域為R,求實數(shù)a的范圍.

解:(1)若f(x)的定義域為R,則關(guān)于x的不等式ax2+2x+1>0的解集為R,

解得a>1.

(2)若f(x)的值域為R,則ax2+2x+1能取一切正數(shù).

a=0或解得0≤a≤1.

點評:(1)f(x)的定義域是R,求得a>1,即a>1時,保證f(x)的定義域是R,但此時由于ax2+2x+1=a(x+)2+1-≥1-,

f(x)的值域是[lg(1-),+∞),不要誤認(rèn)為值域也是R.

(2)f(x)的值域是R,意思是要求其真數(shù)ax2+2x+1的值必須取到(0,+∞)內(nèi)的每一個值,這就要求u=ax2+2x+1的最小值1-不能比零大,否則u就取不到(0,1-)內(nèi)的值.故需a=0或即0≤a≤1.這時若a=0,則f(x)的定義域為(-,+∞);若0<a≤1,則f(x)的定義域為(-∞,x1)∪(x2,

+∞),其中x1、x2為方程ax2+2x+1=0的兩根.不要誤認(rèn)為f(x)的定義域是R.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實數(shù)a,b的值:
(2)當(dāng)a<3時,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(其中e=2.71828…),不等式f(x)<k恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點的橫坐標(biāo)為1.
(1)求直線l的方程及a的值;
(2)當(dāng)k>0時,試討論方程f(1+x2)-g(x)=k的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個極值點x1,x2,若過兩點(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時,若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過點P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案