(1)若甲和乙之間進行三場比賽,求甲恰好勝兩場的概率;
(2)若四名運動員每兩人之間進行一場比賽,求甲恰好勝兩場的概率;
(3)若四名運動員每兩人之間進行一場比賽,設甲獲勝場次為ξ,求隨機變量ξ的分布列及期望Eξ.
解:(1)甲和乙之間進行三場比賽,甲恰好勝兩場的概率為
P=×0.62×0.4=0.432.
(2)記“甲勝乙”,“甲勝丙”,“甲勝丁”三個事件分別為A,B,C,則P(A)=0.6,P(B)=0.8,P(C)=0.9.
則四名運動員每兩人之間進行一場比賽,甲恰好勝兩場的概率為
P(A·B·+A··C+·B·C)
=P(A)·P(B)·[1-P(C)]+P(A)·[1-P(B)]·P(C)+[1-P(A)]·P(B)·P(C)
=0.6×0.8×0.1+0.6×0.2×0.9+0.4×0.8×0.9
=0.444.
(3)隨機變量ξ的可能取值為0,1,2,3.
P(ξ=0)=0.4×0.2×0.1=0.008;
P(ξ=1)=0.6×0.2×0.1+0.4×0.8×0.1+0.4×0.2×0.9=0.116;
由(2)得P(ξ=2)=0.444;
P(ξ=3)=0.6×0.8×0.9=0.432.
∴隨機變量ξ的分布列為
ξ | 0 | 1 | 2 | 3 |
P | 0.008 | 0.116 | 0.444 | 0.432 |
Eξ=0×0.008+1×0.116+2×0.444+3×0.432=2.3.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
5 |
6 |
5 |
6 |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
有甲、乙、丙、丁四名乒乓球運動員,通過對過去戰(zhàn)績的統(tǒng)計,在一場比賽中,甲對乙、丙、丁取勝的概率分別為0.6,0.8,0.9.
(1)若甲和乙之間進行三場比賽,求甲恰好勝兩場的概率;
(2)若四名運動員每兩人之間進行一場比賽,設甲獲勝場次為,求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
有甲、乙、丙、丁四名網(wǎng)球運動員,通過對過去戰(zhàn)績的統(tǒng)計,在一場比賽中,甲對乙、丙、丁取勝的概率分別為0.6,
0.8,0.9.
(1)若甲和乙之間進行三場比賽,求甲恰好勝兩場的概率;
(2)若四名運動員每兩人之間進行一場比賽,求甲恰好勝兩場的概率;
(3)若四名運動員每兩人之間進行一場比賽,設甲獲勝場次為,求隨機變量的概率分布.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com