9.已知0<a<b,且a+b=1,則下列不等式中正確的是( 。
A.log2a>0B.2a-b<$\frac{1}{2}$C.log2a+log2b<-2D.2($\frac{a}$+$\frac{a}$)<$\frac{1}{2}$

分析 利用基本不等式的性質(zhì)依次判斷即可.

解答 解:對(duì)于A:log2a>0可得log2a>log21,∵0<a<b,且a+b=1,即a<1,故A不對(duì).
對(duì)于B:2a-b<$\frac{1}{2}$可得:2a-b<2-1,即a-b<-1,可得a+1<b,與a+b=1矛盾,故B不對(duì).
對(duì)于C:log2a+log2b<-2可得:log2ab<-2,即∵ab$<\frac{1}{4}$,∵0<a<b,且a+b=1,1=a+b>2$\sqrt{ab}$,可得ab<$\frac{1}{4}$,故C對(duì).
對(duì)于D:2($\frac{a}$+$\frac{a}$)<$\frac{1}{2}$,∵0<a<b,且a+b=1,$\frac{a}+\frac{a}>2$,故D不對(duì).
故選:C.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了靈活解決問(wèn)題的能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=ln$\frac{x}{2}$+$\frac{1}{2}$,g(x)=ex-2,對(duì)?m∈R,?n∈(0,+∞)使得g(m)=f (n)成立,則n-m的最小值為( 。
A.-ln 2B.ln 2C.2$\sqrt{e}$-3D.e2-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$y=\frac{x}{{{x^2}+a}}$的圖象不可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知平面向量$\vec a,\vec b$的夾角為$60°,\vec a=({\sqrt{3},1}),|\vec b|=1$則$|\vec a+2\vec b|$=(  )
A.2B.$\sqrt{7}$C.$2\sqrt{7}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在四棱錐P-ABCD中,底面是邊長(zhǎng)為2的菱形,∠BAD=60°,PB=PD=2,AC∩BD=O.
(Ⅰ)證明:PC⊥BD
(Ⅱ)若E是PA的中點(diǎn),且BE與平面PAC所成的角的正切值為$\frac{{\sqrt{6}}}{3}$,求二面角A-EC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)=(ax2+ax+x+a)e-x(a≤0).
(1)討論y=f(x)的單調(diào)性;
(2)當(dāng)a=0時(shí),若f(x1)=f(x2) (x1≠x2),求證x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知正方形ABCD的邊長(zhǎng)為2,E為CD的中點(diǎn),則$\overrightarrow{AE}•\overrightarrow{CB}$=( 。
A.-4B.-3C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.某市在一次降雨過(guò)程中,降雨量y(mm)與時(shí)間t(min)的函數(shù)關(guān)系可近似地表示為y=f(t)=$\sqrt{t}$,則在時(shí)刻t=40min的降雨強(qiáng)度為(  )
A.40mmB.40$\sqrt{10}$mmC.$\frac{1}{40}$mm/minD.$\frac{\sqrt{10}}{40}$mm/min

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在空間直角坐標(biāo)系O-xyz中,若O(0,0,0),A(0,2,0),B(2,0,0),C(2,2,2$\sqrt{3}$),則二面角C-OA-B的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習(xí)冊(cè)答案