(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分4分,第3小題滿分8分。

已知雙曲線C的中心是原點,右焦點為F,一條漸近線m:,設過點A的直線l的方向向量。

(1)求雙曲線C的方程;

(2)若過原點的直線,且al的距離為,求K的值;

(3)證明:當時,在雙曲線C的右支上不存在點Q,使之到直線l的距離為

(1)

(2)

(3)證明見解析。


解析:

(1)設雙曲線的方程為

   ,解得,雙曲線的方程為。

(2)直線,直線

由題意,得,解得。

(3)證法一:設過原點且平行于的直線,

則直線的距離,當時,,

又雙曲線的漸近線為,

  雙曲線的右支在直線的右下方,

  雙曲線右支上的任意點到直線的距離大于。

故在雙曲線的右支上不存在點,使之到直線的距離為。

證法二:假設雙曲線右支上存在點到直線的距離為

由(1)得

,

時,;

代入(2)得

,

 

  方程不存在正根,即假設不成立,

故在雙曲線的右支上不存在點,使之到直線的距離為。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011屆陜西省師大附中、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題

.三、解答題:本大題共6小題,共75分. 解答應寫出文字說明、證明過程或演算步驟.
16. (本題滿分12分)
已知函數(shù)為偶函數(shù), 且
(1)求的值;
(2)若為三角形的一個內角,求滿足的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇大豐新豐中學高二上期中考試文數(shù)學試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;

(總開發(fā)費用=總建筑費用+購地費用)

(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年陜西省、西工大附中高三第五次聯(lián)考理數(shù) 題型:解答題

三、解答題:本大題共6小題,共75分. 解答應寫出文字說明、證明過程或演算步驟.

16. (本題滿分12分)

已知函數(shù)為偶函數(shù), 且

(1)求的值;

(2)若為三角形的一個內角,求滿足的值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分16分)(本題中必要時可使用公式:) 

 設是各項均為正數(shù)的無窮項等差數(shù)列.

(Ⅰ)記,已知

 ,試求此等差數(shù)列的首項a1及公差d;

(Ⅱ)若的首項a1及公差d都是正整數(shù),問在數(shù)列中是否包含一個非常數(shù)列 

 的無窮項等比數(shù)列?若存在,請寫出的構造過程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分16分)(本題中必要時可使用公式:) 

 設是各項均為正數(shù)的無窮項等差數(shù)列.

(Ⅰ)記,已知

 ,試求此等差數(shù)列的首項a1及公差d;

(Ⅱ)若的首項a1及公差d都是正整數(shù),問在數(shù)列中是否包含一個非常數(shù)列 

 的無窮項等比數(shù)列?若存在,請寫出的構造過程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案