設(shè)實(shí)數(shù)a、b、c滿足a2-bc-2a+10=0,b2+bc+c2-12a-15=0.則a的取值范圍是________.

[1,5]
分析:根據(jù)條件,利用基本不等式,可將問題轉(zhuǎn)化為關(guān)于a的不等式,解之,即可得到a的取值范圍.
解答:∵a2-bc-2a+10=0,
∴bc=a2-2a+10
∵b2+bc+c2-12a-15=0.
∴b2+bc+c2=12a+15.
∵b2+bc+c2≥bc+2bc=3bc
∴12a+15≥3(a2-2a+10)
∴a2-6a+5≤0
∴1≤a≤5
∴a的取值范圍是[1,5]
故答案為:[1,5]
點(diǎn)評(píng):本題以等式為載體,考查基本不等式的運(yùn)用,考查學(xué)生分析解決問題的能力,利用基本不等式,將問題轉(zhuǎn)化為關(guān)于a的不等式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)a,b,c滿足
a+b=6-4a+3a2
c-b=4-4a+a2
試比較a,b,c的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3、設(shè)實(shí)數(shù)a、b、c滿足c<b<a,且ac<0,那么下列不等式中不一定成立 的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)a、b、c滿足a2+2b2+3c2=
32
,求證:3-a+9-b+27-c≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)a,b,c滿足a+b+c=3,則a,b,c中( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•西安模擬)設(shè)實(shí)數(shù)a,b,c滿足a>b>c,a+b+c=0,若x1,x2是方程ax2+bx+c=0的兩實(shí)數(shù)根,則|x12-x22|的取值范圍為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案