【題目】某商店為迎接端午節(jié),推出兩款粽子:花生粽和肉粽.為調(diào)查這兩款粽子的受歡迎程度,店員連續(xù)10天記錄了這兩種粽子的銷(xiāo)售量,如下表表示(其中銷(xiāo)售單位:個(gè))
天數(shù) 銷(xiāo)售量 天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
花生粽 | 103 | 93 | 98 | 93 | 106 | 86 | 87 | 94 | 91 | 99 | 100 |
肉粽 | 88 | 97 | 98 | 95 | 101 | 98 | 103 | 106 | 103 | 111 | 100 |
(1)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖:
(2)統(tǒng)計(jì)學(xué)知識(shí),請(qǐng)?jiān)u述哪款粽子更受歡迎;
(3)求肉粽銷(xiāo)售量y關(guān)于天數(shù)t的線性回歸方程,并預(yù)估第15天肉粽的銷(xiāo)售量(回歸方程系數(shù)精確到0.1)
參考數(shù)據(jù):,參考公式:
【答案】(1)見(jiàn)解析;(2)肉粽更受歡迎;(3)113個(gè)
【解析】
(1)根據(jù)表格數(shù)據(jù)填寫(xiě)莖葉圖;(2)由兩種粽子的銷(xiāo)量情況判斷受歡迎款粽子;(3)分別根據(jù)公式求出,,,,從而確定線性回歸方程,再將代入回歸方程,即得銷(xiāo)量.
(1)根據(jù)所給數(shù)據(jù)可繪制如下莖葉圖:
(2)由莖葉圖知,肉粽的銷(xiāo)售量均值高于花生粽,兩種銷(xiāo)售量波動(dòng)情況相當(dāng),所以認(rèn)為肉粽更受歡迎;
(3).
.所以,
從而線性回歸方程為
所以預(yù)估第15天肉粽的銷(xiāo)售量為個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)),曲線C2的參數(shù)方程為(α為參數(shù)),以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1和C2的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程為,直線l與曲線C1和C2分別交于不同于原點(diǎn)的A,B兩點(diǎn),求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】摩拜單車(chē)和小黃車(chē)等各種共享單車(chē)的普及給我們的生活帶來(lái)了便利.已知某共享單車(chē)的收費(fèi)標(biāo)準(zhǔn)是:每車(chē)使用不超過(guò)1小時(shí)(包含1小時(shí))是免費(fèi)的,超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)1元(不足1小時(shí)的部分按1小時(shí)計(jì)算,例如:騎行2.5小時(shí)收費(fèi)2元).現(xiàn)有甲、乙兩人各自使用該種共享單車(chē)一次.設(shè)甲、乙不超過(guò)1小時(shí)還車(chē)的概率分別為1小時(shí)以上且不超過(guò)2小時(shí)還車(chē)的概率分別為兩人用車(chē)時(shí)間都不會(huì)超過(guò)3小時(shí).
(Ⅰ)求甲乙兩人所付的車(chē)費(fèi)相同的概率;
(Ⅱ)設(shè)甲乙兩人所付的車(chē)費(fèi)之和為隨機(jī)變量求的分布列及數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬(wàn)元) | 1 | 2 | 3 | 4 | 5 |
銷(xiāo)售收益 (單位:萬(wàn)元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直線坐標(biāo)系中,定義為兩點(diǎn)的“切比雪夫距離”,又設(shè)點(diǎn)P及上任意一點(diǎn)Q,稱的最小值為點(diǎn)P到直線的“切比雪夫距離”記作給出下列四個(gè)命題:( )
①對(duì)任意三點(diǎn)A、B、C,都有
②已知點(diǎn)P(3,1)和直線則
③到定點(diǎn)M的距離和到M的“切比雪夫距離”相等點(diǎn)的軌跡是正方形;
④定點(diǎn)動(dòng)點(diǎn)滿足則點(diǎn)P的軌跡與直線(為常數(shù))有且僅有2個(gè)公共點(diǎn)。
其中真命題的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
點(diǎn)P是曲線C1:(x-2)2+y2=4上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,以極點(diǎn)O為中心,將點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)Q,設(shè)點(diǎn)Q的軌跡為曲線C2.
(Ⅰ)求曲線C1,C2的極坐標(biāo)方程;
(Ⅱ)射線(ρ>0)與曲線C1,C2分別交于A,B兩點(diǎn),設(shè)定點(diǎn)M(2,0),求△MAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知直線l過(guò)點(diǎn),它的一個(gè)方向向量為.
①求直線l的方程;
②一組直線,,,,,都與直線l平行,它們到直線l的距離依次為d,,,,,(),且直線恰好經(jīng)過(guò)原點(diǎn),試用n表示d的關(guān)系式,并求出直線的方程(用n、i表示);
(2)在坐標(biāo)平面上,是否存在一個(gè)含有無(wú)窮多條直線,,,,的直線簇,使它同時(shí)滿足以下三個(gè)條件:①點(diǎn);②,其中是直線的斜率,和分別為直線在x軸和y軸上的截距;③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方體的棱長(zhǎng)為1.
正方體中哪些棱所在的直線與直線是異面直線?
若M,N分別是 ,的中點(diǎn),求異面直線MN與BC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)為調(diào)研學(xué)生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿分均為60分.
整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組: , , , , , ,得到餐廳分?jǐn)?shù)的頻率分布直方圖,和餐廳分?jǐn)?shù)的頻數(shù)分布表:
定義學(xué)生對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”如下:
分?jǐn)?shù) | |||
滿意度指數(shù) |
(Ⅰ)在抽樣的100人中,求對(duì)餐廳評(píng)價(jià)“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在, 兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”比對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com