選修4-5;不等式選講
已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集為{x|-2≤x≤3},求實數(shù)a的值;
(2)在(1)的條件下,若存在實數(shù)n使f(n)≤m-f(-n)成立,求實數(shù)m的取值范圍.
【答案】
分析:(1)由|2x-a|+a≤6得|2x-a|≤6-a,再利用絕對值不等式的解法去掉絕對值,結(jié)合條件得出a值;
(2)由(1)知f(x)=|2x-1|+1,令φ(n)=f(n)+f(-n),化簡φ(n)的解析式,若存在實數(shù)n使f(n)≤m-f(-n)成立,只須m大于等于φ(n)的最小值即可,從而求出實數(shù)m的取值范圍.
解答:解:(1)由|2x-a|+a≤6得|2x-a|≤6-a,
∴a-6≤2x-a≤6-a,即a-3≤x≤3,
∴a-3=-2,
∴a=1.(5分)
(2)由(1)知f(x)=|2x-1|+1,令φ(n)=f(n)+f(-n),
則φ(n)=|2n-1|+|2n+1|+2=
∴φ(n)的最小值為4,故實數(shù)m的取值范圍是[4,+∞).(10分)
點評:本題考查絕對值不等式的解法,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學(xué)思想,利用分段函數(shù)化簡函數(shù)表達(dá)式是解題的關(guān)鍵.