已知函數(shù)f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(1)當a=-
103
時,討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)僅在x=0處有極值,求a的取值范圍.
分析:(1)先對函數(shù)f(x)進行求導,然后將a的值代入,根據(jù)導函數(shù)大于0時原函數(shù)單調(diào)增,導函數(shù)小于0時原函數(shù)單調(diào)減,可判斷函數(shù)的單調(diào)性.
(2)根據(jù)(1)中的導函數(shù),可判斷x=0不是方程4x2+3ax+4=0的根,進而得到函數(shù)由極值的充要條件,求出a的范圍.
解答:解:(1)f′(x)=4x3+3ax2+4x=x(4x2+3ax+4).
當a=-
10
3
時,f′(x)=x(4x2-10x+4)=2x(2x-1)(x-2).
令f′(x)=0,解得x1=0,x2=
1
2
,x3=2.
當x變化時,f′(x),f(x)的變化情況如下表:
精英家教網(wǎng)
所以f(x)在(0,
1
2
),(2,+∞)內(nèi)是增函數(shù),在(-∞,0),(
1
2
,2)內(nèi)是減函數(shù).

(2)f′(x)=x(4x2+3ax+4),顯然x=0不是方程4x2+3ax+4=0的根.
為使f(x)僅在x=0處有極值,必須4x2+3ax+4≥0成立,即有△=9a2-64≤0.
解此不等式,得-
8
3
≤a≤
8
3

這時,f(0)=b是唯一極值.
因此滿足條件的a的取值范圍是[-
8
3
,
8
3
].
點評:本題主要考查函數(shù)的單調(diào)性、極值點與其導函數(shù)之間的關(guān)系.導數(shù)是高等數(shù)學下放到高中,是高考的熱點問題,每年必考要給予重視.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案