已知雙曲線的方程為,若直線截雙曲線的一支所得弦長為5. 高@考@資@源@網(wǎng)

       (I)求的值;

       (II)設(shè)過雙曲線上的一點的直線與雙曲線的兩條漸近線分別交于,且點分有向線段所成的比為。當時,求為坐標原點)的最大值和www.ks5u.com最小值

(I)m=0(II)


解析:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,過左焦點F1作斜率為
3
3
的直線交雙曲線的右支于點P,且y軸平分線段F1P,則雙曲線的離心率是( 。
A、
2
B、
5
+1
C、
3
D、2+
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的方程為16x2-9y2=144.
(1)求雙曲線的焦點坐標、離心率和準線方程;
(2)求以雙曲線的中心為頂點,左頂點為焦點的拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•濟南三模)已知雙曲線的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),雙曲線的一個焦點到一條漸近線的距離為
5
3
c
(c為雙曲線的半焦距長),則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•寶山區(qū)二模)已知雙曲線的方程為
x23
-y2=1
,則此雙曲線的焦點到漸近線的距離為
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•昌平區(qū)二模)已知雙曲線的方程為
x2
4
-y2=1
,則其漸近線的方程為
y=±
1
2
x
y=±
1
2
x
,若拋物線y2=2px的焦點與雙曲線的右焦點重合,則p=
2
5
2
5

查看答案和解析>>

同步練習冊答案