設A={x|1≤x≤10,x∈N},B={x|x2+2x-8=0,x∈R},全集U=R,則圖中陰影表示的集合中的元素為________.

-4
分析:根據(jù)題意,解x2+2x-8=0可得集合B,由并集的定義可得A∪B,分析可得圖中陰影部分表示元素為A∪B中只屬于B的元素,在A∪B中排除A的元素可得答案.
解答:根據(jù)題意,A={x|1≤x≤10,x∈N}={1,2,3,4,5,6,7,8,9,10},
解x2+2x-8=0可得x=2或-4,
則B={2,-4},
則A∪B={1,2,3,4,5,6,7,8,9,10,-4},
圖中陰影部分表示元素為A∪B中只屬于B的元素,則陰影表示的集合中的元素為-4,
故答案為-4.
點評:本題考查Venn表示集合的關(guān)系,關(guān)鍵是分析得到陰影部分表示的元素.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A={x|-1≤x≤4},B={x|m-1<x<3m+1},
(1)當x∈N*時,求A的子集的個數(shù);
(2)當x∈R且A∩B=B時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設A={x|-1≤x≤4},B={x|m-1<x<3m+1},
(1)當x∈N*時,求A的子集的個數(shù);
(2)當x∈R且A∩B=B時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年北京師大二附中高一(上)第一次段考數(shù)學試卷(解析版) 題型:選擇題

設A={x|-1≤x≤3},B={x|0<x<4},則A∪B=( )
A.{x|0<x≤3}
B.{x|-1≤x<4}
C.{x|-1≤x<4或x≠0}
D.{x|3≤x<4}

查看答案和解析>>

同步練習冊答案