精英家教網 > 高中數學 > 題目詳情

求函數f(x)=x2-4x+(2-a)lnx(a∈R)在區(qū)間[e,e2]上的最小值.

解:當x∈[e,e2]時,f(x)=x2-4x+(2-a)lnx,
所以 ,
設g(x)=2x2-4x+2-a.
①當a≤0時,有△=16-4×2(2-a)=8a≤0
所以f'(x)≥0,f(x)在[e,e2]上單調遞增.
所以f(x)min=f(e)=e2-4e+2-a
②當a>0時,△=16-4×2(2-a)=8a>0,
令f'(x)>0,即2x2-4x+2-a>0,解得 (舍);
令f'(x)<0,即2x2-4x+2-a<0,解得
10,即a≥2(e2-1)2時,f(x)在區(qū)間[e,e2]單調遞減,
所以f(x)min=f(e2)=e4-4e2+4-2a.
20,即2(e-1)2<a<2(e2-1)2時,f(x)在區(qū)間 上單調遞減,
在區(qū)間 上單調遞增,所以
30,即0<a≤2(e-1)2時,f(x)在區(qū)間[e,e2]單調遞增,
所以f(x)min=f(e)=e2-4e+2-a.
綜上所述,
當a≥2(e2-1)2時,f(x)min=e4-4e2+4-2a;
當2(e-1)2<a<2(e2-1)2時,;
當a≤2(e-1)2時,f(x)min=e2-4e+2-a.
分析:先求函數的導數,即,再令g(x)=2x2-4x+2-a,對a進行討論,從而得到
f′(x)的符號,進而得到f(x)的單調性,從而得到函數的極值點、端點的函數值,比較極小值與端點函數值的大小,近而求出最小值.
點評:本題考查了復合函數的在閉區(qū)間上的最值問題,還有分類討論的思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

要解決下面四個問題,只用順序結構畫不出其程序框圖的是( 。
A、利用1+2+…+n=
n(n+1)
2
,計算1+2+3+…+10的值
B、當圖面積已知時,求圓的周長
C、當給定一個數x,求其絕對值
D、求函數f(x)=x2-4x+5的函數值

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-2ax+b的圖象關于直線x=1對稱,且方程f(x)+2x=0有兩個相等的實根.
(1)求a,b的值;
(2)求函數f(x)=x2-2ax+b在閉區(qū)間[0,3]上的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

寫出求函數f(x)=
x2-1 (x<0)
5x (0≤x<1)
x+7 (x≥1)
的函數值的相應的流程圖.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=logax在(0,+∞)上是減函數,求函數f(x)=x2-2ax+3在[-2,
12
]
上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={y|y=2x},B={x|y=lg(4-x2)}.
(1)求A∩B;
(2)當x∈A∩B時,求函數f(x)=x2-x+1的值域.

查看答案和解析>>

同步練習冊答案