| ||
n個1 |
科目:高中數(shù)學 來源:2014屆四川省高一下學期期中理科數(shù)學試卷(解析版) 題型:解答題
已知正項數(shù)列的前n項和滿足:,
(1)求數(shù)列的通項和前n項和;
(2)求數(shù)列的前n項和;
(3)證明:不等式 對任意的,都成立.
【解析】第一問中,由于所以
兩式作差,然后得到
從而得到結論
第二問中,利用裂項求和的思想得到結論。
第三問中,
又
結合放縮法得到。
解:(1)∵ ∴
∴
∴ ∴ ………2分
又∵正項數(shù)列,∴ ∴
又n=1時,
∴ ∴數(shù)列是以1為首項,2為公差的等差數(shù)列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 對任意的,都成立.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年福建省廈門二中高二(上)數(shù)學專題訓練:數(shù)列求和(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省高三第五次質量檢測文科數(shù)學試卷(解析版) 題型:解答題
在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設數(shù)列{cn}滿足,求{cn}的前n項和Tn.
【解析】本試題主要是考查了等比數(shù)列的通項公式和求和的運用。第一問中,利用等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項公式故an=3+3(n-1)=3n, bn=3 n-1. 第二問中,,由第一問中知道,然后利用裂項求和得到Tn.
解: (Ⅰ) 設:{an}的公差為d,
因為解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因為……………8分
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com