已知數(shù)列{an}的前n項和為Sn,對任意n∈N*,有2an=Sn+n.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)f(n)=n2 (n∈N*),試比較Sn與f(n)的大小,并說明理由.
(Ⅰ)當(dāng)n=1時,2a1=a1+1∴a1=1…(1分)
∵2an=Sn+n,n∈N*,∴2an-1=Sn-1+n-1,n≥2,
兩式相減得an=2an-1+1,n≥2,即an+1=2(an-1+1),n≥2,
令bn=an+1,則
bn
bn-1
=2
,n≥2且b1=a1+1=2,
所以bn=b1•2n-1=2×2n-1=2n.n∈N*,
∴an=2n-1,n∈N*…(7分)
(Ⅱ)由(Ⅰ)an=2n-1,n∈N*,
得Sn=(2+22+23+…+2n)-n
=
2(1-2n+1)
1-2
-n
=2n+1-n-2
當(dāng)n=1,2時,Sn=f(n);當(dāng)n≥3時,Sn>f(n)…(9分)
只需證2n+1>n2+n+2,n≥3,
利用(1+1)2=
C0n
+
C1n
+
C2n
+…+
Cnn
C0n
+
C1n
+
C2n
=
1
2
(n2+n+2)

∴2n+1>n2+n+2,n≥3.…(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案