20.設(shè)向量$\overrightarrow{AB}$=(2,6),$\overrightarrow{BC}$=(-1,m),$\overrightarrow{CD}$=(3,m),若A,C,D三點共線,則m=-9.

分析 由A,C,D三點共線可得$\overrightarrow{AC}$與$\overrightarrow{CD}$共線,由向量共線的坐標(biāo)表示可得m的方程,解方程可得.

解答 解:∵向量$\overrightarrow{AB}$=(2,6),$\overrightarrow{BC}$=(-1,m),$\overrightarrow{CD}$=(3,m),
∴$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$=(2,6)+(-1,m)=(1,6+m),
∵A,C,D三點共線,∴$\overrightarrow{AC}$與$\overrightarrow{CD}$共線,
∴1×m=3(6+m)解得m=-9,
故答案為:-9.

點評 本題考查平面向量共線的坐標(biāo)表示,把三點共線轉(zhuǎn)化為向量共線是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一個圓錐形容器,上口半徑為5cm.高為6cm,容器內(nèi)裝滿了某種液體,其中進入了一個細菌,從中取出50cm3的液體,則其中含有這個細菌的概率是$\frac{1}{π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.化簡下列各式:
(1)$\sqrt{5-2\sqrt{6}}$+$\sqrt{7-4\sqrt{3}}$-$\sqrt{6-4\sqrt{2}}$;
(2)($\sqrt{a}$+$\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt}$)÷($\frac{a}{\sqrt{ab}+b}$+$\frac{\sqrt{ab}-a}$-$\frac{a+b}{\sqrt{ab}}$)-$\sqrt$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=sin(ωx+φ)+$\sqrt{3}$cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)為偶函數(shù),且在區(qū)間($\frac{3π}{4}$,π)上單調(diào)遞增,則ω的最小值為( 。
A.2B.$\frac{4}{3}$C.1D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)y=cosx在[-$\frac{π}{3}$,$\frac{π}{3}$]的值域是( 。
A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[-$\frac{1}{2}$,1]C.[$\frac{1}{2}$,1]D.[-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,某人打算做一個正四棱錐形的金字塔模型,先用木料搭邊框,再用其他材料填充.已知金字塔的每一條棱和邊都相等
(1)求證:直線AC垂直于直線SD.
(2)若搭邊框共使用木料24米,則需要多少立方米的填充材料才能將整個金字塔內(nèi)部填滿?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若中心在原點,對稱軸為坐標(biāo)軸的雙曲線的漸近線方程為y=±$\sqrt{2}$x,則該雙曲線的離心率為(  )
A.$\sqrt{3}$或$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{6}}{2}$或3C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知F是雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的右焦點,點P的坐標(biāo)為(3,1),點A在雙曲線上,則|AP|+|AF|的最小值為( 。
A.$\sqrt{37}$+4B.$\sqrt{37}$-4C.$\sqrt{37}$-2$\sqrt{5}$D.$\sqrt{37}$+2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,已知三棱柱ABC-A1BlC1中,點D是AB的中點,平面A1DC分此棱柱成兩部分,多面體A1ADC與多面體A1B1C1DBC體積的比值為1:5.

查看答案和解析>>

同步練習(xí)冊答案