某會議室用5盞燈照明,每盞燈各使用燈泡一只,且型號相同,假定每盞燈能否正常照明只與燈泡的壽命有關,該型號的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2,從使用之日起每滿1年進行一次燈泡更換工作,只更換已壞的燈泡,平時不換.

(Ⅰ)在第一次燈泡更換工作中,求不需要更換燈泡的概率和更換2只燈泡的概率;

(Ⅱ))在第二次燈泡更換工作中,對其中的某一盞燈來說,求該盞燈需要更換燈泡的概率;

(Ⅲ)當p1=0.8,p2=0.3時,求在第二次燈泡更換工作中,至少需要更換4只燈泡的概率(結果只保留兩個有效數(shù)字).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

21、某會議室用5盞燈照明,每盞燈各使用燈泡一只,且型號相同.假定每盞燈能否正常照明只與燈泡的壽命有關,該型號的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿1年進行一次燈泡更換工作,只更換已壞的燈泡,平時不換.
(Ⅰ)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;
(Ⅱ)在第二次燈泡更換工作中,對其中的某一盞燈來說,求該盞燈需要更換燈泡的概率;
(Ⅲ)當p1=0.8,p2=0.3時,求在第二次燈泡更換工作,至少需要更換4只燈泡的概率(結果保留兩個有效數(shù)字).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(05年湖北卷文)(12分)

某會議室用5盞燈照明,每盞燈各使用燈泡一只,且型號相同.假定每盞燈能否正常照明只與燈泡的壽命有關,該型號的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿1年進行一次燈泡更換工作,只更換已壞的燈泡,平時不換.

   (Ⅰ)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;

   (Ⅱ)在第二次燈泡更換工作中,對其中的某一盞燈來說,求該盞燈需要更換燈泡的概率;

   (Ⅲ)當p1=0.8,p2=0.3時,求在第二次燈泡更換工作,至少需要更換4只燈泡的概率(結果保留兩個有效數(shù)字).

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某會議室用5盞燈照明,每盞燈各使用燈泡一只,且型號相同.假定每盞燈能否正常照明只與燈泡的壽命有關,該型號的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿1年進行一次燈泡更換工作,只更換已壞的燈泡,平時不換.?

(1)在第一次燈泡更換工作中,求不需更換燈泡的概率和更換2只燈泡的概率;?

(2)在第二次燈泡更換工作中,對其中的某一盞燈來說,求該盞燈需要更換燈泡的概率;?

(3)當p1=0.8,p2=0.3時,求在第二次燈泡更換工作中,至少需要更換4只燈泡的概率(結果保留兩個有效數(shù)字).

查看答案和解析>>

科目:高中數(shù)學 來源:湖北省高考真題 題型:解答題

某會議室用5盞燈照明,每盞燈各使用燈泡一只,且型號相同。假定每盞燈能否正常照明只與燈泡的壽命有關,該型號的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2;從使用之日起每滿1年進行一次燈泡更換工作,只更換已壞的燈泡,平時不換,
(Ⅰ)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;
(Ⅱ)在第二次燈泡更換工作中,對其中的某一盞燈來說,求該盞燈需要更換燈泡的概率;
(Ⅲ)當p1=0.8,p2=0.3時,求在第二次燈泡更換工作中,至少需要更換4只燈泡的概率(結果保留兩個有效數(shù)字)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某會議室用5盞燈照明,每盞燈各使用燈泡一只,且型號相同.假定每盞燈能否正常照明只與燈泡的壽命有關,該型號的燈泡壽命為1年以上的概率為P1,壽命為2年以上的概率為P2.從使用之日起每滿1年進行一次燈泡更換工作,只更換已壞的燈泡,平時不換.

(1)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;

(2)在第二次燈泡更換工作中,對其中的某一盞燈來說,求該盞燈需要更換燈泡的概率;

(3)當P1=0.8,P2=0.3時,求在第二次燈泡更換工作,至少需要更換4只燈泡的概率(結果保留兩個有效數(shù)字).

查看答案和解析>>

同步練習冊答案