設(shè)Sn為數(shù)列{an}前n項和,對任意的n∈N*,都有Sn=2-an,數(shù)列{bn}滿足,b1=2a1,
(1)求證:數(shù)列{an}是等比數(shù)列,并求{an}的通項公式;
(2)求數(shù)列{bn}的通項公式;
(3)求數(shù)列的前n項和Tn
【答案】分析:(1)當(dāng)n=1時,由a1=S1=2-a1,可求a1,n≥2時,由an=Sn-Sn-1,可得an=與an-1之間的遞推關(guān)系,結(jié)合等比數(shù)列的通項公式可求an
(2)由,可得,結(jié)合等差數(shù)列的通項公式可求,進(jìn)而可求bn
(3)由(1)(2)可求,利用錯位相減求和即可求解
解答:(本小題滿分14分)
證明:(1)當(dāng)n=1時,a1=S1=2-a1,解得a1=1.                                …(1分)
當(dāng)n≥2時,an=Sn-Sn-1=an-1-an,即2an=an-1
.                                                   …(2分)
∴數(shù)列{an}是首項為1,公比為的等比數(shù)列,即.     …(4分)
解:(2)b1=2a1=2.                                                           …(5分)

,即.                  …(6分)
是首項為,公差為1的等差數(shù)列.                                 …(7分)
,…(8分)
(3)∵,
.             …(9分)
所以,…(10分)
,①…(11分)
,②…(12分)
②-①得,…(13分)
.                …(14分)
點評:本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的通項公式、等差數(shù)列與等比數(shù)列的通項公式的應(yīng)用,還考查了錯位相減求和方法的應(yīng)用
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項和,Sn=(-1)nan-
1
2n
,n∈N+,則a2+a4+a6+…+a100=
1
3
(1-
1
2100
)
1
3
(1-
1
2100
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項和,Sn=λan-1(λ為常數(shù),n=1,2,3,…).
(I)若a3=a22,求λ的值;
(II)是否存在實數(shù)λ,使得數(shù)列{an}是等差數(shù)列?若存在,求出λ的值;若不存在.請說明理由
(III)當(dāng)λ=2時,若數(shù)列{bn}滿足bn+1=an+bn(n=1,2,3,…),且b1=
3
2
,令cn=
an
(an+1) bn
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)在等差數(shù)列{an},等比數(shù)列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4
(Ⅰ)設(shè)Sn為數(shù)列{an}的前n項和,求anbn和Sn;
(Ⅱ)設(shè)Cn=
anbnSn+1
(n∈N*),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項和,Sn=n2+pn,n∈N*,其中p是實數(shù).
(1)若數(shù)列{
Sn
}
為等差數(shù)列,求p的值;
(2)若對于任意的m∈N*,am,a2m,a4m成等比數(shù)列,求p的值;
(3)在(2)的條件下,令b1=a1,bn=a2n-1,其前n項和為Tn,求Tn關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前N項和,且有S1=a,Sn+Sn-1=3n2,n=2,3,4,…
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{an}是單調(diào)遞增數(shù)列,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案