設(shè)U=R,A={x||x|>1},B={x|x-
12
≥0},則CUA=
 
CUB=
 
分析:先求出集合A和集合B,然后再求出CUA和CUB.
解答:解:∵U=R,
A={x||x|>1}={x|x>1或x<-1},
B={x|x≥
1
2
},
∴CUA={x|-1≤x≤1},
CUB={x|x<
1
2
}.
故答案:{x|-1≤x≤1},{x|x<
1
2
}.
點評:本題考查集合的補集及其運算,解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

10、設(shè)U=R,A={x|a≤x≤b},CUA={x|x>4或x<3},則a=
3
,b=
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)設(shè)U=R,A={x|-2≤x<4},B={x|8-2x≥3x-7},求A∪B,
(2)集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)U=R,A={x|x>0},B=[x|x<-1或x>2},則A∩(?UB)=
{x|0<x≤2}
{x|0<x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)U=R,A={x|x>0},B={x|
1
x
≥1},則A∩CUB=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)U=R,A={x|x>0},B={x|y=lg(1-x)},則A∩B=
 

查看答案和解析>>

同步練習冊答案