【題目】已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}.

(1)a=3,求(RP)∩Q;

(2)PQQ,求實(shí)數(shù)a的取值范圍.

【答案】(1) {x|-2≤x<4};(2) (-∞,2]

【解析】

(1)解一元二次不等式得集合Q,再根據(jù)補(bǔ)集與交集定義求結(jié)果,(2)先根據(jù)條件得集合之間包含關(guān)系,再根據(jù)Q是否為空集分類討論,最后求并集.

(1)因?yàn)?/span>a=3,所以P={x|4≤x≤7},

RP={x|x<4x>7}.

Q={x|x2-3x-10≤0}={x|-2≤x≤5},所以(RP)∩Q={x|x<4x>7}∩{x|-2≤x≤5}={x|-2≤x<4}.

(2)當(dāng)P時(shí),由PQQPQ,

所以解得0≤a≤2;

當(dāng)P,即2a+1<a+1時(shí),有PQ,得a<0.

綜上,實(shí)數(shù)a的取值范圍是(-∞,2].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù), 對(duì)于給定的非零實(shí)數(shù),總存在非零常數(shù),使得定義域內(nèi)的任意實(shí)數(shù),都有恒成立,此時(shí)的假周期,函數(shù)上的級(jí)假周期函數(shù),若函數(shù)是定義在區(qū)間內(nèi)的3級(jí)假周期且,當(dāng) 函數(shù),若, 使成立,則實(shí)數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有、、四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎(jiǎng),在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四件參賽作品的獲獎(jiǎng)情況預(yù)測(cè)如下.

甲說(shuō):“、同時(shí)獲獎(jiǎng).”

乙說(shuō):“不可能同時(shí)獲獎(jiǎng).”

丙說(shuō):“獲獎(jiǎng).”

丁說(shuō):“、至少一件獲獎(jiǎng)”

如果以上四位同學(xué)中有且只有兩位同學(xué)的預(yù)測(cè)是正確的,則獲獎(jiǎng)的作品是( )

A. 作品與作品B. 作品與作品C. 作品與作品D. 作品與作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),是雙曲線C的左,右焦點(diǎn),O是坐標(biāo)原點(diǎn)過(guò)C的一條漸近線的垂線,垂足為P,若,則C的離心率為  

A. B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)在點(diǎn)處的切線.

)求的解析式.

)求證:

)設(shè),其中.若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=ax2bxc(a,b,cR)滿足:對(duì)任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x(1,3)時(shí),有f(x)≤ (x+2)2成立.

(1)證明:f(2)=2;

(2)f(-2)=0,求f(x)的表達(dá)式;

(3)設(shè)g(x)=f(x)-x,x[0,+∞),若g(x)圖象上的點(diǎn)都位于直線y的上方,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).

(I)證明:CE∥平面PAB;

(II)求直線CE與平面PBC所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),,其中,為自然對(duì)數(shù)的底數(shù)

1討論的單調(diào)性;

2證明:當(dāng)時(shí),;

3確定的所有可能取值,使得區(qū)間內(nèi)恒成立

查看答案和解析>>

同步練習(xí)冊(cè)答案