已知a>0,函數(shù)f(x)=-2asin(2x+)+2a+b,當(dāng)x∈[0,]時(shí),-5≤f(x)≤1.
(1)求常數(shù)a,b的值.
(2)設(shè)g(x)=f(x+)且lg g(x)>0,求g(x)的單調(diào)區(qū)間.
解:(1)∵x∈[0,],∴2x+∈[,].
∴sin(2x+)∈[-,1],
∴-2asin(2x+)∈[-2a,a].
∴f(x)∈[b,3a+b].
又∵-5≤f(x)≤1,
∴b=-5,3a+b=1,因此a=2,b=-5.
(2)由(1)得a=2,b=-5,
∴f(x)=-4sin(2x+)-1,
g(x)=f(x+)=-4sin(2x+)-1
=4sin(2x+)-1,
又由lg g(x)>0得g(x)>1,
∴4sin(2x+)-1>1,
∴sin(2x+)>,
∴2kπ+<2x+<2kπ+,k∈Z,
其中當(dāng)2kπ+<2x+≤2kπ+,k∈Z時(shí),g(x)單調(diào)遞增,即kπ<x≤kπ+,k∈Z.
∴g(x)的單調(diào)增區(qū)間為(kπ,kπ+],k∈Z.
又∵當(dāng)2kπ+<2x+<2kπ+,k∈Z時(shí),g(x)單調(diào)遞減,即kπ+<x<kπ+,k∈Z.
∴g(x)的單調(diào)減區(qū)間為(kπ+,kπ+),k∈Z.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)y=cos(ωx+)(ω∈N*)的一個(gè)對(duì)稱中心是(,0),則ω的最小值為( )
(A)1 (B)2 (C)4 (D)8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=Asin ωx(A>0,ω>0)的最小正周期為2,且f()=1,則函數(shù)y=f(x)的圖象向左平移個(gè)單位所得圖象的解析式為( )
(A)y=2sin(πx+)
(B)y=sin(πx-)
(C)y=2sin(πx+)
(D)y=sin(πx+)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=sin x+sin(x+).
(1)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(2)不畫(huà)圖,說(shuō)明函數(shù)y=f(x)的圖象可由y=sin x的圖象經(jīng)過(guò)怎樣的變化得到.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
.已知向量a=(2cos x,1),b=(cos x,sin 2x),函數(shù)f(x)=a·b.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[,]時(shí),若f(x)=,求f(x-)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在△ABC中,已知a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,S為△ABC的面積.若向量p=(S,a+b+c),q=(a+b-c,1)滿足p∥q,則tan 等于( )
(A) (B) (C)2 (D)4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com