若直角坐標(biāo)平面內(nèi)不同的兩點(diǎn)P、Q滿(mǎn)足條件:①P、Q都在函數(shù)f(x)=
log2x(x>0)
-x2-4x(x≤0)
y=f(x)的圖象上
②P,Q關(guān)于原點(diǎn)對(duì)稱(chēng),則稱(chēng)點(diǎn)對(duì)[P,Q]是函數(shù)Y=f(x)的一對(duì)“友好點(diǎn)對(duì)”(注:點(diǎn)對(duì)[P,Q]與[Q,P]看作同一對(duì)“友好點(diǎn)對(duì)”).若函數(shù),則此函數(shù)的“友好點(diǎn)對(duì)”有(  )對(duì).
分析:根據(jù)題意:“友好點(diǎn)對(duì)”,可知,欲求f(x)的“友好點(diǎn)對(duì)”,只須作出函數(shù)y=-x2-4x(x≤0)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)的圖象,看它與函數(shù)f(x)=log2x,(x>0)交點(diǎn)個(gè)數(shù)即可.
解答:解:根據(jù)題意:當(dāng)x>0時(shí),-x<0,
則f(-x)=-(-x)2-4(-x)=-x2+4x,
則函數(shù)y=-x2-4x(x≤0)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)的函數(shù)是y=x2-4x(x≥0)
由題意知,作出函數(shù)y=x2-4x(x≥0)的圖象及函數(shù)f(x)=log2x,(x>0)的圖象如下圖所示
由圖可得兩個(gè)函數(shù)圖象共有兩個(gè)交點(diǎn),
精英家教網(wǎng)
即函數(shù)f(x)的“友好點(diǎn)對(duì)”有2對(duì),
故選C.
點(diǎn)評(píng):本題考查了奇偶函數(shù)圖象的對(duì)稱(chēng)性,體現(xiàn)了數(shù)形結(jié)合思想,解答的關(guān)鍵是對(duì)“友好點(diǎn)對(duì)”的理解,合理的利用圖象解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)P到直線(xiàn)l1:x=-2的距離為d1,到點(diǎn)F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動(dòng)點(diǎn)P所在曲線(xiàn)C的方程;
(2)直線(xiàn)l過(guò)點(diǎn)F且與曲線(xiàn)C交于不同兩點(diǎn)A、B(點(diǎn)A或B不在x軸上),分別過(guò)A、B點(diǎn)作直線(xiàn)l1:x=-2的垂線(xiàn),對(duì)應(yīng)的垂足分別為M、N,試判斷點(diǎn)F與以線(xiàn)段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點(diǎn)),問(wèn)是否存在實(shí)數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.
進(jìn)一步思考問(wèn)題:若上述問(wèn)題中直線(xiàn)l1:x=-
a2
c
、點(diǎn)F(-c,0)、曲線(xiàn)C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請(qǐng)給出你的判斷
 
 (填寫(xiě)“不正確”或“正確”)(限于時(shí)間,這里不需要舉反例,或證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直角坐標(biāo)平面內(nèi)的兩個(gè)不同的點(diǎn)M、N滿(mǎn)足條件①M(fèi)、N都在函數(shù)y=f(x)的圖象上;②M、N關(guān)于原點(diǎn)對(duì)稱(chēng).
則稱(chēng)點(diǎn)對(duì)[M,N]為函數(shù)y=f(x)的一對(duì)“友好點(diǎn)對(duì)”(注:點(diǎn)對(duì)[M,N]與[N,M]為同一“友好點(diǎn)對(duì)”).
已知函數(shù)f(x)=
log3x   x>0
-x2-4x  x≤0
,此函數(shù)的“友好點(diǎn)對(duì)”有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R,i,j為直角坐標(biāo)平面內(nèi)x軸、y軸正方向上的單位向量,若向量a=xi+(y+
2
)j,b=xi+(y-
2
),且|a|+|b|=4

(I)求點(diǎn)M(x,y)的軌跡C的方程;
(II)若軌跡C上在第一象限的一點(diǎn)P的橫坐標(biāo)為1,作斜率為
2
的直線(xiàn)l與軌跡C交于不同兩點(diǎn)A、B,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北孝感高中高三年級(jí)九月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

若直角坐標(biāo)平面內(nèi)不同的兩點(diǎn)滿(mǎn)足條件:①都在函數(shù)的圖像上;②關(guān)于原點(diǎn)對(duì)稱(chēng),則稱(chēng)點(diǎn)對(duì)是函數(shù)的一對(duì)“友好點(diǎn)對(duì)”(注:點(diǎn)對(duì)看作同一對(duì)“友好點(diǎn)對(duì)”).若函數(shù),則此函數(shù)的“友好點(diǎn)對(duì)”有(     )對(duì).

 A.                B.                  C.         D. 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案