若a+b=1(a>0,b>0),則的最小值為( )
A.2
B.4
C.8
D.16
【答案】分析:題目給出了兩個正數(shù)a、b的和是定值1,求的最小值,直接運(yùn)用基本不等式不能得到要求的結(jié)論,可想著把要求最值的式子的分子的1換成a+b,或整體乘1,然后換成a+b,采用多項(xiàng)式乘多項(xiàng)式展開后再運(yùn)用基本不等式.
解答:解:≥2=4.
所以的最小值為4.
故選B.
點(diǎn)評:本題考查了基本不等式,考查了數(shù)學(xué)轉(zhuǎn)化思想和整體代換思想,解答此題的關(guān)鍵是數(shù)字1的代換,是?碱}型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a+b=1(a>0,b>0),則
1
a
+
1
b
的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城二模)設(shè)函數(shù)fn(x)=-xn+3ax+b(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為
12
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)數(shù)學(xué)公式(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為數(shù)學(xué)公式,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年江蘇省鹽城市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

設(shè)函數(shù)(n∈N*,a,b∈R).
(1)若a=b=1,求f3(x)在[0,2]上的最大值和最小值;
(2)若對任意x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,求a的取值范圍;
(3)若|f4(x)|在[-1,1]上的最大值為,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案