設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+3)=f(x).當(dāng)0≤x≤1時(shí)有f(x)=2x,則f(8.5)=________.

-1
分析:由f(x+3)=f(x).得函數(shù)的周期為3,然后利用周期性和奇偶性進(jìn)行數(shù)值轉(zhuǎn)化即可.
解答:由f(x+3)=f(x),所以函數(shù)的周期是3,所以f(8.5)=f(5.5)=f(2.5)=f(-0.5).
因?yàn)楹瘮?shù)f(x)為奇函數(shù),所以f(-0.5)=-f(0.5)=-2×0.5=-1.
所以f(8.5)=-1.
故答案為:-1.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性和周期性的應(yīng)用,要求熟練掌握函數(shù)的性質(zhì)的綜合應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•咸安區(qū)模擬)設(shè)f(x)是定義域?yàn)镽的奇函數(shù),g(x)是定義域?yàn)镽的恒大于零的函數(shù),且當(dāng)x>0時(shí)有f′(x)g(x)<f(x)g′(x).若f(1)=0,則不等式f(x)>0的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感模擬)對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心;且‘拐點(diǎn)’就是對(duì)稱(chēng)中心.”請(qǐng)你將這一發(fā)現(xiàn)為條件,求
(1)函數(shù)f(x)=x3-3x2+3x對(duì)稱(chēng)中心為
(1,1)
(1,1)

(2)若函數(shù)g(x)=
1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)=
2010
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•河北區(qū)一模)設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f′(x)的圖象如圖所示,則f(x)的圖象最有可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在實(shí)數(shù)R上的函數(shù),g(x)是定義在正整數(shù)N*上的函數(shù),同時(shí)滿(mǎn)足下列條件:
(1)任意x,y∈R,有f(x+y)=f(x)f(y),當(dāng)x<0時(shí),f(x)>1且f(-1)=
5
;
(2)g(1)=f(0),g(2)=f(-2);
(3)f[g(n+2)]=
f[(n+3)g(n+1)]
f[(n+2)g(n)]
,n∈N*
試求:
(1)證明:任意x,y∈R,x≠y,都有
f(x)-f(y)
x-y
<0
;
(2)是否存在正整數(shù)n,使得g(n)是25的倍數(shù),若存在,求出所有自然數(shù)n;若不存在說(shuō)明理由.(階乘定義:n!=1×2×3×…×n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時(shí),有xf′(x)-f(x)<0恒成立,則不等式x2f(x)>0的解集是( 。
A、(-∞,-2)∪(0,2)B、(-2,0)∪(2,+∞)C、(-2,2)D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案